login
A046351
Palindromic composite numbers with only palindromic prime factors.
5
4, 6, 8, 9, 22, 33, 44, 55, 66, 77, 88, 99, 121, 202, 242, 252, 262, 303, 343, 363, 393, 404, 484, 505, 525, 606, 616, 626, 686, 707, 808, 909, 939, 1111, 1331, 1441, 1661, 1991, 2112, 2222, 2662, 2772, 2882, 3333, 3443, 3773, 3883, 3993, 4224, 4444, 5445
OFFSET
1,1
LINKS
FORMULA
(A032350 INTERSECT A033620) MINUS {1}. - R. J. Mathar, Sep 09 2015
MATHEMATICA
palQ[n_]:=Reverse[x=IntegerDigits[n]]==x; Select[Range[4, 5500], !PrimeQ[#]&&And@@palQ/@Join[{#}, First/@FactorInteger[#]]&](* Jayanta Basu, Jun 05 2013 *)
PROG
(Python)
from itertools import product
from sympy import isprime, primefactors as pf
def pal(n): s = str(n); return s == s[::-1]
def palsthru(maxdigits):
midrange = [[""], [str(i) for i in range(10)]]
for digits in range(1, maxdigits+1):
for p in product("0123456789", repeat=digits//2):
left = "".join(p)
if len(left) and left[0] == '0': continue
for middle in midrange[digits%2]: yield int(left+middle+left[::-1])
def okpal(p): return p > 3 and not isprime(p) and all(pal(f) for f in pf(p))
print(list(filter(okpal, palsthru(4)))) # Michael S. Branicky, Apr 06 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Jun 15 1998
STATUS
approved