login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046013
Discriminants of imaginary quadratic fields with class number 16 (negated).
3
399, 407, 471, 559, 584, 644, 663, 740, 799, 884, 895, 903, 943, 1015, 1016, 1023, 1028, 1047, 1139, 1140, 1159, 1220, 1379, 1412, 1416, 1508, 1560, 1595, 1608, 1624, 1636, 1640, 1716, 1860, 1876, 1924, 1983, 2004, 2019, 2040, 2056, 2072
OFFSET
1,1
COMMENTS
322 discriminants in this sequence (almost certainly but not proved).
LINKS
Steven Arno, M. L. Robinson and Ferrel S. Wheeler, Imaginary quadratic fields with small odd class number, Acta Arithm. 83.4 (1998), 295-330
Duncan A. Buell, Small class numbers and extreme values of L-functions of quadratic fields, Math. Comp., 31 (1977), 786-796.
C. Wagner, Class Number 5, 6 and 7, Math. Comput. 65, 785-800, 1996.
Victor Y. Wang, On Hilbert 2-class fields and 2-towers of imaginary quadratic number fields, arXiv preprint arXiv:1508.06552, 2015
Eric Weisstein's World of Mathematics, Class Number.
MATHEMATICA
Reap[ For[n = 1, n < 3000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 16, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
PROG
(PARI) ok(n)={isfundamental(-n) && qfbclassno(-n) == 16} \\ Andrew Howroyd, Jul 24 2018
KEYWORD
nonn,fini
STATUS
approved