OFFSET
1,1
COMMENTS
322 discriminants in this sequence (almost certainly but not proved).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..322
Steven Arno, M. L. Robinson and Ferrel S. Wheeler, Imaginary quadratic fields with small odd class number, Acta Arithm. 83.4 (1998), 295-330
Duncan A. Buell, Small class numbers and extreme values of L-functions of quadratic fields, Math. Comp., 31 (1977), 786-796.
C. Wagner, Class Number 5, 6 and 7, Math. Comput. 65, 785-800, 1996.
Victor Y. Wang, On Hilbert 2-class fields and 2-towers of imaginary quadratic number fields, arXiv preprint arXiv:1508.06552, 2015
Eric Weisstein's World of Mathematics, Class Number.
MATHEMATICA
Reap[ For[n = 1, n < 3000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 16, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
PROG
(PARI) ok(n)={isfundamental(-n) && qfbclassno(-n) == 16} \\ Andrew Howroyd, Jul 24 2018
CROSSREFS
KEYWORD
nonn,fini
AUTHOR
STATUS
approved