OFFSET
1,2
COMMENTS
A variant of Kaprekar's original definition (A006886).
REFERENCES
D. R. Kaprekar, On Kaprekar numbers, J. Rec. Math., 13 (1980-1981), 81-82.
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, NY, 1986, p. 151.
LINKS
Jinyuan Wang, Table of n, a(n) for n = 1..30047
D. E. Iannucci, The Kaprekar numbers, J. Integer Sequences, Vol. 3, 2000, #1.2.
Rosetta Code, Kaprekar numbers
Eric Weisstein's World of Mathematics, Kaprekar Number
Wikipedia, Kaprekar number
EXAMPLE
703 is Kaprekar because 703 = 494 + 209, 703^2 = 494209.
11111112^2 = 123456809876544 = (1234568 + 9876544)^2. The two "halves" of the square have the same length here, although it's not m but rather m - 1.
CROSSREFS
KEYWORD
nonn,base,easy,changed
AUTHOR
EXTENSIONS
More terms from Michel ten Voorde, Apr 13 2001
Definition clarified by Reinhard Zumkeller, Oct 05 2014
Definition modified and terms corrected by Max Alekseyev, Aug 06 2017
STATUS
approved