OFFSET
0,2
COMMENTS
This is the 4-dimensional Elkies_B lattice.
LINKS
John Cannon, Table of n, a(n) for n = 0..5000
N. D. Elkies, Elliptic and modular curves over finite fields and related computational issues, in AMS/IP Studies in Advanced Math., 7 (1998), 21-76, esp. p. 57.
EXAMPLE
1 + 2*q^2 + 6*q^8 + 2*q^10 + 14*q^12 + 4*q^14 + 10*q^16 + 14*q^18 + 16*q^20 + ...
PROG
(PARI) B(x, y, z, w)=2*x^2+8*y^2+10*z^2+12*w^2+2*x*(y+w)+2*y*(z-3*w)+4*z*w;
thetaB(n, N, bx, by, bz, bw, ix, iy, iz, iw, nn)=n=2*n; bx=floor(sqrt(n)*(1+1/sqrt(6))); bz=floor(sqrt(n/7)); bw=floor(sqrt(n/6)); by=floor(sqrt(n/3)); N=vector(n/2+2); for(ix=-bx, bx, for(iy=-by, by, for(iz=-bz, bz, for(iw=-bw, bw, nn=B(ix, iy, iz, iw); if (nn<=n, N[1+nn/2]++); )))); N;
thetaB(80)
(PARI) {a(n)=if(n<1, n==0, qfrep([ 2, 1, 0, 1; 1, 8, 1, -3; 0, 1, 10, 2; 1, -3, 2, 12 ], n, 1)[n]*2)} /* Michael Somos, Apr 02 2006 */
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 22 2000
STATUS
approved