login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045724
Convolution of Catalan numbers A000108 with A020918.
5
1, 15, 142, 1083, 7266, 44758, 259356, 1435347, 7663898, 39761282, 201483204, 1001098462, 4891910100, 23565178380, 112118316088, 527674017411, 2459747256138, 11368724035210, 52145629874100, 237541552456362
OFFSET
0,2
COMMENTS
Also convolution of A001700 with A038845; also convolution of A029887 with A000302 (powers of 4); also convolution of A042941 with A000984 (central binomial coefficients).
LINKS
FORMULA
a(n) = binomial(n+4, 3)*A000984(n+4)/(2*A000984(3)) - (n+3)*(n+2)*4^n, where A000984(n) = binomial(2*n, n),
G.f.: c(x)/(1-4*x)^(7/2) = (2 - c(x))/(1-4*x)^4, where c(x) = g.f. for Catalan numbers.
MATHEMATICA
Table[(Binomial[n+5, 4]*CatalanNumber[n+4] -5*4^(n+1)*Binomial[n+3, 2] )/10, {n, 0, 40}] (* G. C. Greubel, Jul 19 2024 *)
PROG
(Magma) [(Binomial(n+5, 4)*Catalan(n+4) -5*4^(n+1)*Binomial(n+3, 2))/10: n in [0..40]]; // G. C. Greubel, Jul 19 2024
(SageMath) [(binomial(n+5, 4)*catalan_number(n+4) - 5*4^(n+1)*binomial(n+3, 2))/10 for n in range(41)] # G. C. Greubel, Jul 19 2024
KEYWORD
easy,nonn
STATUS
approved