login
A045386
Primes congruent to {1, 2, 4} mod 7.
4
2, 11, 23, 29, 37, 43, 53, 67, 71, 79, 107, 109, 113, 127, 137, 149, 151, 163, 179, 191, 193, 197, 211, 233, 239, 263, 277, 281, 317, 331, 337, 347, 359, 373, 379, 389, 401, 421, 431, 443, 449, 457, 463, 487, 491, 499, 541, 547, 557, 569, 571, 599, 613, 617, 631, 641, 653, 659, 673
OFFSET
1,1
COMMENTS
Rational primes that decompose in the field Q(sqrt(-7)). - N. J. A. Sloane, Dec 25 2017
All these primes can be represented by the binary quadratic form x^2 + xy + 2y^2. - Alonso del Arte, Jun 13 2014. Indeed, apart from the fact that 7 is missing, this appears to coincide with A045373. - N. J. A. Sloane, Jun 14 2014
REFERENCES
Şaban Alaca & Kenneth S. Williams, Introductory Algebraic Number Theory. Cambridge: Cambridge University Press (2004) p. 48, Theorem 2.5.4.
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
MATHEMATICA
Select[Prime[Range[300]], MemberQ[{1, 2, 4}, Mod[#, 7]] &] (* Vincenzo Librandi, Aug 11 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(600) | p mod 7 in [1, 2, 4]]; // Vincenzo Librandi, Aug 11 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 11 1999
STATUS
approved