login
A045309
Primes congruent to {0, 2} mod 3.
17
2, 3, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563
OFFSET
1,1
COMMENTS
Also, primes p such that the equation x^3 == y (mod p) has a unique solution x for every choice of y. - Klaus Brockhaus, Mar 02 2001; Michel Drouzy (DrouzyM(AT)noos.fr), Oct 28 2001
LINKS
FORMULA
a(n) ~ 2n log n. - Charles R Greathouse IV, Apr 20 2015
MATHEMATICA
Select[Prime[Range[150]], MemberQ[{0, 2}, Mod[#, 3]]&] (* Harvey P. Dale, Jun 14 2011 *)
PROG
(Magma) [ p: p in PrimesUpTo(1000) | #[ x: x in ResidueClassRing(p) | x^3 eq 2 ] eq 1 ]; // Klaus Brockhaus, Apr 11 2009
(PARI) is(n)=isprime(n) && n%3!=1 \\ Charles R Greathouse IV, Apr 20 2015
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Edited by N. J. A. Sloane, Apr 11 2009
STATUS
approved