login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A043303
Numerator of B(4n+2)/(2n+1) where B(m) are the Bernoulli numbers.
2
1, 1, 1, 1, 43867, 77683, 657931, 1723168255201, 151628697551, 154210205991661, 1520097643918070802691, 25932657025822267968607, 19802288209643185928499101, 29149963634884862421418123812691
OFFSET
0,5
COMMENTS
Note that numerator of B(2n)/n is odd so B(2n)/(2n), B(2n)/(4n), etc. have the same numerators. - Michael Somos, Feb 01 2004
REFERENCES
Bruce Berndt, Ramanujan's Notebooks Part II, Springer-Verlag; see Infinite series, p. 262.
LINKS
FORMULA
B(4n+2)/(8n+4) = sum_{k>=1} k^(4n+1)/(exp(2Pi*k)-1)).
MAPLE
seq(numer(bernoulli(4*n+2)/(2*n+1)), n=0..30); # Robert Israel, Sep 18 2016
MATHEMATICA
Table[BernoulliB[4n+2]/(2n+1), {n, 0, 20}]//Numerator (* Harvey P. Dale, Aug 13 2018 *)
PROG
(PARI) a(n)=if(n<0, 0, numerator(bernfrac(4*n+2)/(2*n+1)))
CROSSREFS
Cf. A043304. a(n)=A001067(2n+1).
Sequence in context: A206517 A279892 A037147 * A233790 A378097 A359127
KEYWORD
easy,frac,nonn
AUTHOR
Benoit Cloitre, Apr 04 2002
STATUS
approved