login
A042299
Denominators of continued fraction convergents to sqrt(675).
2
1, 1, 51, 52, 2651, 2703, 137801, 140504, 7163001, 7303505, 372338251, 379641756, 19354426051, 19734067807, 1006057816401, 1025791884208, 52295652026801, 53321443911009, 2718367847577251, 2771689291488260, 141302832421990251, 144074521713478511
OFFSET
0,3
COMMENTS
The following remarks assume an offset of 1. This is the sequence of Lehmer numbers U_n(sqrt(R),Q) for the parameters R = 50 and Q = -1; it is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Consequently, this is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, May 27 2014
FORMULA
G.f.: -(x^2-x-1) / (x^4-52*x^2+1). - Colin Barker, Dec 07 2013
a(n) = 52*a(n-2) - a(n-4) for n>3. - Vincenzo Librandi, Jan 19 2014
From Peter Bala, May 27 2014: (Start)
The following remarks assume an offset of 1.
Let alpha = ( sqrt(50) + sqrt(54) )/2 and beta = ( sqrt(50) - sqrt(54) )/2 be the roots of the equation x^2 - sqrt(50)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even.
a(n) = Product_{k = 1..floor((n-1)/2)} ( 50 + 4*cos^2(k*Pi/n) ).
Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 50*a(2*n) + a(2*n - 1). (End)
MATHEMATICA
Denominator[Convergents[Sqrt[675], 30]] (* Vincenzo Librandi, Jan 19 2014 *)
PROG
(Magma) I:=[1, 1, 51, 52]; [n le 4 select I[n] else 52*Self(n-2)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jan 19 2014
CROSSREFS
KEYWORD
nonn,frac,easy
EXTENSIONS
More terms from Colin Barker, Dec 07 2013
STATUS
approved