login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041901
Denominators of continued fraction convergents to sqrt(472).
2
1, 1, 3, 4, 7, 11, 51, 266, 1115, 1381, 2496, 3877, 10250, 14127, 603584, 617711, 1839006, 2456717, 4295723, 6752440, 31305483, 163279855, 684424903, 847704758, 1532129661, 2379834419, 6291798499, 8671632918, 370500381055, 379172013973
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 613834, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).
FORMULA
G.f.: -(x^26 -x^25 +3*x^24 -4*x^23 +7*x^22 -11*x^21 +51*x^20 -266*x^19 +1115*x^18 -1381*x^17 +2496*x^16 -3877*x^15 +10250*x^14 -14127*x^13 -10250*x^12 -3877*x^11 -2496*x^10 -1381*x^9 -1115*x^8 -266*x^7 -51*x^6 -11*x^5 -7*x^4 -4*x^3 -3*x^2 -x -1)/(x^28 -613834*x^14 +1). - Vincenzo Librandi, Dec 26 2013
a(n) = 613834*a(n-14) - a(n-28) for n>27. - Vincenzo Librandi, Dec 26 2013
MATHEMATICA
Denominator[Convergents[Sqrt[472], 30]] (* or *) CoefficientList[Series[-(x^26 - x^25 + 3 x^24 - 4 x^23 + 7 x^22 - 11 x^21 + 51 x^20 - 266 x^19 + 1115 x^18 - 1381 x^17 + 2496 x^16 - 3877 x^15 + 10250 x^14 - 14127 x^13 - 10250 x^12 - 3877 x^11 - 2496 x^10 - 1381 x^9 - 1115 x^8 - 266 x^7 - 51 x^6 - 11 x^5 - 7 x^4 - 4 x^3 - 3 x^2 - x - 1)/(x^28 - 613834 x^14 + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 26 2013 *)
PROG
(Magma) I:=[1, 1, 3, 4, 7, 11, 51, 266, 1115, 1381, 2496, 3877, 10250, 14127, 603584, 617711, 1839006, 2456717, 4295723, 6752440, 31305483, 163279855, 684424903, 847704758, 1532129661, 2379834419, 6291798499, 8671632918]; [n le 28 select I[n] else 613834*Self(n-14)-Self(n-28): n in [1..40]]; // Vincenzo Librandi, Dec 26 2013
CROSSREFS
Cf. A041900.
Sequence in context: A042827 A041631 A042655 * A111518 A291853 A041153
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Vincenzo Librandi, Dec 26 2013
STATUS
approved