login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041899
Denominators of continued fraction convergents to sqrt(471).
2
1, 1, 3, 7, 10, 37, 158, 2249, 9154, 29711, 38865, 107441, 253747, 361188, 15423643, 15784831, 46993305, 109771441, 156764746, 580065679, 2477027462, 35258450147, 143510828050, 465790934297, 609301762347, 1684394458991, 3978090680329, 5662485139320
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15677390, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).
FORMULA
G.f.: -(x^26 -x^25 +3*x^24 -7*x^23 +10*x^22 -37*x^21 +158*x^20 -2249*x^19 +9154*x^18 -29711*x^17 +38865*x^16 -107441*x^15 +253747*x^14 -361188*x^13 -253747*x^12 -107441*x^11 -38865*x^10 -29711*x^9 -9154*x^8 -2249*x^7 -158*x^6 -37*x^5 -10*x^4 -7*x^3 -3*x^2 -x -1)/(x^28 -15677390*x^14 +1). - Vincenzo Librandi, Dec 26 2013
a(n) = 15677390*a(n-14) - a(n-28) for n>27. - Vincenzo Librandi, Dec 26 2013
MATHEMATICA
Denominator[Convergents[Sqrt[471], 30]] (* or *) CoefficientList[Series[-(x^26 - x^25 + 3 x^24 - 7 x^23 + 10 x^22 - 37 x^21 + 158 x^20 - 2249 x^19 + 9154 x^18 - 29711 x^17 + 38865 x^16 - 107441 x^15 + 253747 x^14 - 361188 x^13 - 253747 x^12 - 107441 x^11 - 38865 x^10 - 29711 x^9 - 9154 x^8 - 2249 x^7 - 158 x^6 - 37 x^5 - 10 x^4 - 7 x^3 - 3 x^2 - x - 1)/(x^28 - 15677390 x^14 + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 26 2013 *)
PROG
(Magma) I:=[1, 1, 3, 7, 10, 37, 158, 2249, 9154, 29711, 38865, 107441, 253747, 361188, 15423643, 15784831, 46993305, 109771441, 156764746, 580065679, 2477027462, 35258450147, 143510828050, 465790934297, 609301762347, 1684394458991, 3978090680329, 5662485139320]; [n le 28 select I[n] else 15677390*Self(n-14)-Self(n-28): n in [1..50]]; // Vincenzo Librandi, Dec 26 2013
CROSSREFS
Cf. A041898.
Sequence in context: A146927 A193650 A041783 * A101397 A042229 A042373
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Vincenzo Librandi, Dec 26 2013
STATUS
approved