login
A041667
Denominators of continued fraction convergents to sqrt(352).
2
1, 1, 4, 21, 193, 986, 3151, 4137, 152083, 156220, 620743, 3259935, 29960158, 153060725, 489142333, 642203058, 23608452421, 24250655479, 96360418858, 506052749769, 4650835166779, 23760228583664, 75931520917771, 99691749501435, 3664834502969431
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,155234,0,0,0,0,0,0,0,-1).
FORMULA
G.f.: -(x^14 -x^13 +4*x^12 -21*x^11 +193*x^10 -986*x^9 +3151*x^8 -4137*x^7 -3151*x^6 -986*x^5 -193*x^4 -21*x^3 -4*x^2 -x -1) / ((x^8 -394*x^4 +1)*(x^8 +394*x^4 +1)). - Colin Barker, Nov 21 2013
a(n) = 155234*a(n-8) - a(n-16) for n>15. - Vincenzo Librandi, Dec 22 2013
MATHEMATICA
Denominator[Convergents[Sqrt[352], 30]] (* Vincenzo Librandi, Dec 22 2013 *)
PROG
(Magma) I:=[1, 1, 4, 21, 193, 986, 3151, 4137, 152083, 156220, 620743, 3259935, 29960158, 153060725, 489142333, 642203058]; [n le 16 select I[n] else 155234*Self(n-8)-Self(n-16): n in [1..40]]; // Vincenzo Librandi, Dec 22 2013
CROSSREFS
Sequence in context: A065527 A267988 A360630 * A377828 A286883 A217144
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 21 2013
STATUS
approved