login
A041613
Denominators of continued fraction convergents to sqrt(325).
5
1, 36, 1297, 46728, 1683505, 60652908, 2185188193, 78727427856, 2836372591009, 102188140704180, 3681609437941489, 132640127906597784, 4778726214075461713, 172166783834623219452, 6202782944260511361985, 223472352777213032250912
OFFSET
0,2
COMMENTS
From Michael A. Allen, Jul 13 2023: (Start)
Also called the 36-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 36 kinds of squares available. (End)
a(2*n) and b(2*n) = A041612(2*n) give all (positive integer) solutions to the Pell equation b^2 - 13*a^2 = -1. a(2*n+1) and b(2*n+1) = A041612(2*n+1) give all (positive integer) solutions to the Pell equation b^2 - 13*a^2 = 1. - Robert FERREOL, Oct 09 2024
LINKS
FORMULA
a(n) = F(n, 36), the n-th Fibonacci polynomial evaluated at x=36. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 36*a(n-1) + a(n-2) for n > 1; a(0)=1, a(1)=36.
G.f.: 1/(1 - 36*x - x^2). (End)
a(n) = ((18 + 5*sqrt(13))^(n+1) - (18 - 5*sqrt(13))^(n+1)) / (2*sqrt(13)). - Robert FERREOL, Oct 09 2024
MAPLE
with (combinat):seq(fibonacci(3*n, 3)/10, n=1..15); # Zerinvary Lajos, Apr 20 2008
MATHEMATICA
a=0; lst={}; s=0; Do[a=s-(a-1); AppendTo[lst, a]; s+=a*36, {n, 3*4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 27 2009 *)
Denominator[Convergents[Sqrt[325], 30]] (* Vincenzo Librandi Dec 21 2013 *)
CROSSREFS
Cf. A041612 (numerators), A040306 (continued fraction), A295330.
Row n=36 of A073133, A172236 and A352361 and column k=36 of A157103.
Sequence in context: A224011 A300357 A009980 * A255821 A209042 A283729
KEYWORD
nonn,frac,easy
EXTENSIONS
More terms from Colin Barker, Nov 20 2013
STATUS
approved