login
Triangle of "canonical" optimal Golomb rulers.
3

%I #27 Jan 29 2022 12:16:47

%S 1,1,2,1,3,2,1,3,5,2,1,3,6,2,5,1,3,6,8,5,2,1,3,5,6,7,10,2,1,4,7,13,2,

%T 8,6,3,1,5,4,13,3,8,7,12,2,1,3,9,15,5,14,7,10,6,2,2,4,18,5,11,3,12,13,

%U 7,1,9,2,3,20,12,6,16,11,15,4,9,1,7

%N Triangle of "canonical" optimal Golomb rulers.

%C n-th row gives first differences of the (n+1)-th row of A106683. - _Andrey Zabolotskiy_, Aug 22 2017

%D CRC Handbook of Combinatorial Designs, 1996, p. 315.

%D A. Kotzig and P. J. Laufer, Sum triangles of natural numbers having minimum top, Ars. Combin. 21 (1986), 5-13.

%H Distributed.Net, <a href="http://www.distributed.net/ogr">Project OGR</a>

%H L. Miller, <a href="https://web.archive.org/web/20030404100258/http://www.cuug.ab.ca:80/~millerl/g3-records.html">Golomb Rulers</a>

%H B. Rankin, <a href="https://web.archive.org/web/20120418104127/http://people.ee.duke.edu:80/~wrankin/golomb/golomb.html">Golomb Ruler Calculations</a>

%H J. B. Shearer, <a href="http://www.research.ibm.com/people/s/shearer/grtab.html">Golomb ruler table</a>

%H N. J. A. Sloane, <a href="/A003022/a003022.gif">First few optimal Golomb rulers</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GolombRuler.html">Golomb Ruler</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Golomb_ruler">Golomb ruler</a>

%H <a href="/index/Go#Golomb">Index entries for sequences related to Golomb rulers</a>

%e Triangle begins:

%e 1;

%e 1, 2;

%e 1, 3, 2;

%e 1, 3, 5, 2;

%e 1, 3, 6, 2, 5;

%e 1, 3, 6, 8, 5, 2;

%e ...

%Y Cf. A003022, A036501.

%Y These all start at 1. For rulers starting at 0, see A079283, A079287, A079423, A079425, A079426, A079430, A079433, A079434, A079435, A079454 and A079467, A079604, A079605, A079606, A079607, A079608, A079625, A079634.

%K nonn,tabl,nice

%O 1,3

%A _N. J. A. Sloane_

%E Corrected by _Philip Newton_, Feb 06 2002

%E Corrected by _Andrey Zabolotskiy_, Aug 22 2017