OFFSET
0,3
COMMENTS
Arises in the approximation of 14-fold quasipatterns by 14 Fourier modes.
REFERENCES
A. M. Rucklidge & W. J. Rucklidge (preprint) 2002.
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..20000
S. Lang and H. Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972), 112-134.
S. Lang and H. Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972), 112-134. [Annotated scanned copy]
Alastair Rucklidge, Home page
G. Xiao, Contfrac
FORMULA
w satisfies w^3 - w^2 - 2w + 1 = 0 and so is algebraic.
The other two roots are 2*cos(3 Pi/7) and 2*cos(5 Pi/7); their continued fraction expansions also end in 20, 2, 3, 1, 6, 10, 5, 2, 2, 1, ... which is a(n) for n >= 3. - Greg Dresden, Jul 01 2018
EXAMPLE
w = 1.80193773580483825247220463901489010233183832426371430010712484639886...
Equals 1 + 1/(1 + 1/(4 + 1/(20 + 1/(2 + ...)))). - Harry J. Smith, May 31 2009
MATHEMATICA
ContinuedFraction[2*Cos[Pi/7], 100]
PROG
(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(2*cos(Pi/7)); for (n=0, 20000, write("b039921.txt", n, " ", x[n+1])); } \\ Harry J. Smith, May 31 2009
CROSSREFS
KEYWORD
cofr,nonn
AUTHOR
STATUS
approved