login
A039735
Triangle read by rows: T(n,k) = number of nonisomorphic unlabeled planar graphs with n >= 1 nodes and 0 <= k <= 3n-6 edges.
5
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 4, 6, 6, 6, 4, 2, 1, 1, 1, 2, 5, 9, 15, 21, 24, 24, 20, 13, 5, 2, 1, 1, 2, 5, 10, 21, 41, 65, 97, 130, 144, 135, 98, 51, 16, 5, 1, 1, 2, 5, 11, 24, 56, 115, 221, 401, 658, 956, 1217, 1264, 1042, 631, 275, 72, 14, 1, 1, 2, 5
OFFSET
1,10
COMMENTS
Planar graphs with n >= 3 nodes have at most 3n-6 edges. - Charles R Greathouse IV, Feb 18 2013
REFERENCES
R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
R. J. Wilson, Introduction to Graph Theory. Academic Press, NY, 1972, p. 162.
LINKS
F. Harary, The number of linear, directed, rooted, and connected graphs, Trans. Amer. Math. Soc. 78 (1955), 445-463. (MR0068198) See page 457, equation (2.9).
FORMULA
From Michael Somos, Aug 23 2015: (Start)
Sum_{k} T(n, k) = A005470(n) if n >= 1.
log(1 + A(x, y)) = Sum_{n>0} B(x^n, y^n) / n where A(x, y) = Sum_{n>0, k>=0} T(n,k) * x^n * y^k and similarly B(x, y) with A049334. (End)
EXAMPLE
Triangle starts
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12
--:-- -- -- -- -- -- -- -- -- -- -- -- --
1: 1
2: 1 1
3: 1 1 1 1
4: 1 1 2 3 2 1 1
5: 1 1 2 4 6 6 6 4 2 1
6: 1 1 2 5 9 15 21 24 24 20 13 5 2
CROSSREFS
Cf. A005470 (row sums), A008406, A049334.
Sequence in context: A255252 A174985 A008406 * A283761 A171457 A376611
KEYWORD
nonn,tabf,nice
AUTHOR
STATUS
approved