login
A038997
Number of sublattices of index n in generic 10-dimensional lattice.
12
1, 1023, 29524, 698027, 2441406, 30203052, 47079208, 408345795, 653757313, 2497558338, 2593742460, 20608549148, 11488207654, 48162029784, 72080070744, 222984027123, 125999618778, 668793731199, 340614792100, 1704167305962, 1389966536992, 2653398536580, 1883023236984
OFFSET
1,2
REFERENCES
Michael Baake, "Solution of the coincidence problem in dimensions d <= 4", in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44.
FORMULA
f(Q, n) = Sum_{d|n} d*f(Q-1, d); here Q=10.
Multiplicative with a(p^e) = Product_{k=1..9} (p^(e+k)-1)/(p^k-1).
Dirichlet g.f.: Product_{k=0..Q-1} zeta(s-k). - R. J. Mathar, Apr 01 2011
Sum_{k=1..n} a(k) ~ c * n^10, where c = Pi^30*zeta(3)*zeta(5)*zeta(7)*zeta(9) / 4511535509250000 = 0.229259... . - Amiram Eldar, Oct 19 2022
MATHEMATICA
f[p_, e_] := Product[(p^(e + k) - 1)/(p^k - 1), {k, 1, 9}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
CROSSREFS
KEYWORD
nonn,mult
EXTENSIONS
Offset set to 1 by R. J. Mathar, Apr 01 2011
More terms from Amiram Eldar, Aug 29 2019
STATUS
approved