login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038621
Growth function of an infinite cubic graph (number of nodes at distance <=n from fixed node).
2
1, 4, 10, 22, 46, 81, 129, 198, 284, 392, 530, 691, 883, 1114, 1374, 1674, 2022, 2405, 2837, 3326, 3856, 4444, 5098, 5799, 6567, 7410, 8306, 9278, 10334, 11449, 12649, 13942, 15300, 16752, 18306, 19931, 21659, 23498, 25414, 27442, 29590, 31821, 34173, 36654
OFFSET
0,2
COMMENTS
Partial sums of A038620.
FORMULA
a(0)=1, a(1)=4; for n>=2: if n == 0 (mod 3), a(n) = (4*n^3 + 6*n^2 + 15*n - 9)/9; if n == 1 (mod 3), a(n) = (4*n^3 + 6*n^2 + 18*n - 10)/9; if n == 2 (mod 3), a(n) = (4*n^3 + 6*n^2 + 15*n + 4)/9.
G.f.: (x+1)*(2*x^8-4*x^7+3*x^6-x^5+6*x^4+2*x^3+2*x^2+x+1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, May 10 2013
MATHEMATICA
CoefficientList[Series[(x + 1) (2 x^8 - 4 x^7 + 3 x^6 - x^5 + 6 x^4 + 2 x^3 + 2 x^2 + x + 1)/((x - 1)^4 (x^2 + x + 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 22 2013 *)
LinearRecurrence[{2, -1, 2, -4, 2, -1, 2, -1}, {1, 4, 10, 22, 46, 81, 129, 198, 284, 392}, 50] (* Harvey P. Dale, Sep 03 2016 *)
CROSSREFS
Sequence in context: A265052 A266372 A174622 * A078407 A347113 A347307
KEYWORD
nonn,easy
EXTENSIONS
More terms from Colin Barker, May 10 2013
STATUS
approved