login
A038365
Numbers n with property that digits of n are not present in 2n.
4
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 18, 19, 22, 23, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 39, 41, 43, 44, 45, 46, 48, 52, 53, 54, 55, 56, 57, 58, 59, 64, 65, 66, 67, 69, 72, 73, 76, 77, 78, 79, 82, 83, 85, 86, 88, 92, 93, 94, 111, 113, 114, 115, 116, 117, 118
OFFSET
1,2
COMMENTS
207 is the smallest number containing a zero, cf. A192825. [Reinhard Zumkeller, Aug 09 2011]
EXAMPLE
36 is in the list since 2*36=72, which shares no digit with 36.
MATHEMATICA
Select[Range[140], Intersection[IntegerDigits[2 #], IntegerDigits[#]] =={}&] (* Harvey P. Dale, Apr 30 2011 *)
PROG
(Haskell)
import Data.List (intersect)
a038365 n = a038365_list !! (n-1)
a038365_list = filter (\x -> null (show (2*x) `intersect` show x)) [1..]
-- Reinhard Zumkeller, Aug 09 2011
CROSSREFS
Cf. A129845 (complement).
Sequence in context: A106000 A267215 A039219 * A359075 A247761 A031185
KEYWORD
nonn,easy,base,nice
STATUS
approved