login
A038200
Row sums of triangle K(m, n), inverse to triangle T(m,n) in A020921.
6
1, 0, -1, 3, -8, 21, -54, 134, -318, 720, -1560, 3259, -6641, 13391, -27107, 55657, -116244, 245823, -521738, 1101566, -2299215, 4730990, -9601095, 19273729, -38446742, 76598275, -153119606, 308061214, -624460449, 1274268038, -2611866713, 5362888620, -11003127203, 22516189988
OFFSET
1,4
COMMENTS
The triangle K is A126713.
LINKS
Temba Shonhiwa, A Generalization of the Euler and Jordan Totient Functions, Fib. Quart., 37 (1999), 67-76.
N. J. A. Sloane, Transforms
FORMULA
Inverse binomial transform of tau(n) = A000005(n): Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*A000005(k). - Vladeta Jovovic, Oct 29 2002
E.g.f.: exp(-x)*Sum_{k>=1} d(k)*x^k/k!. - Ilya Gutkovskiy, Nov 26 2017
CROSSREFS
Sequence in context: A166287 A186812 A027930 * A291039 A030015 A318567
KEYWORD
sign
AUTHOR
Temba Shonhiwa (Temba(AT)maths.uz.ac.zw)
EXTENSIONS
Better description from Michael Somos
STATUS
approved