login
A038184
State of one-dimensional cellular automaton 'sigma' (Rule 150): 000,001,010,011,100,101,110,111 -> 0,1,1,0,1,0,0,1 at generation n, converted to a decimal number.
15
1, 7, 21, 107, 273, 1911, 5189, 28123, 65793, 460551, 1381653, 7039851, 17829905, 124809335, 340873541, 1840690907, 4295032833, 30065229831, 90195689493, 459568513131, 1172543963409, 8207807743863, 22286925370437
OFFSET
0,2
COMMENTS
Generation n (starting from the generation 0: 1) interpreted as a binary number, but written in base 10.
Rows of the mod 2 trinomial triangle (A027907), interpreted as binary numbers: 1, 111, 10101, 1101011, ... (A118110). - Jacob A. Siehler, Aug 25 2006
See A071053 for number of ON cells. - N. J. A. Sloane, Jul 28 2014
EXAMPLE
Bit patterns with "0" replaced by "." for visibilty [Georg Fischer, Dec 16 2021]:
0: 1
1: 111
2: 1.1.1
3: 11.1.11
4: 1...1...1
5: 111.111.111
6: 1.1...1...1.1
7: 11.11.111.11.11
8: 1.......1.......1
9: 111.....111.....111
10: 1.1.1...1.1.1...1.1.1
11: 11.1.11.11.1.11.11.1.11
12: 1...1.......1.......1...1
13: 111.111.....111.....111.111
14: 1.1...1.1...1.1.1...1.1...1.1
15: 11.11.11.11.11.1.11.11.11.11.11
MAPLE
bit_n := (x, n) -> `mod`(floor(x/(2^n)), 2);
sigmagen := proc(n) option remember: if (0 = n) then (1)
else sum('((bit_n(sigmagen(n-1), i)+bit_n(sigmagen(n-1), i-1)+bit_n(sigmagen(n-1), i-2)) mod 2)*(2^i)', 'i'=0..(2*n)) fi: end:
MATHEMATICA
f[n_] := Sum[2^k*Coefficient[ #, x, k], {k, 0, 2n}] & @ Expand[(1 + x + x^2)^n, Modulus -> 2] (* Jacob A. Siehler, Aug 25 2006 *)
PROG
(PARI)
a(n) = subst(lift(Pol(Mod([1, 1, 1], 2), 'x)^n), 'x, 2);
vector(23, n, a(n-1)) \\ Gheorghe Coserea, Jun 12 2016
CROSSREFS
Cf. A006977, A006978, A038183, A038185 (other cellular automata).
This sequence, A071036 and A118110 are equivalent descriptions of the Rule 150 automaton.
Sequence in context: A253072 A261854 A219152 * A001185 A001693 A321521
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 15 1999
STATUS
approved