login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers whose base-3 and base-9 expansions have the same digit sum.
15

%I #67 May 03 2024 15:17:48

%S 0,1,2,9,10,11,18,19,20,81,82,83,90,91,92,99,100,101,162,163,164,171,

%T 172,173,180,181,182,729,730,731,738,739,740,747,748,749,810,811,812,

%U 819,820,821,828,829,830,891,892,893,900,901,902,909,910,911

%N Numbers whose base-3 and base-9 expansions have the same digit sum.

%C a(n) = Sum_{i=0..m} d(i)*9^i, where Sum_{i=0..m} d(i)*3^i is the base-3 representation of n.

%C Numbers that can be written using only digits 0, 1 and 2 in base 9. Also, write n in base 3, read as base 9: (3) [n] (9) in base change notation. a(3n+k) = 9a(n)+k for k in {0,1,2}. - _Franklin T. Adams-Watters_, Jul 24 2006

%C Also, every term k corresponds to a unique pair i,j with k = a(i) + 3*a(j) (similarly to the Moser-de Bruijn sequence). - _Luis Rato_, May 02 2024

%F G.f. f(x) = Sum_{j>=0} 9^j*x^(3^j)*(1+x^(3^j)-2*x^(2*3^j))/((1-x)*(1-x^(3^(j+1)))) satisfies f(x) = 9*(x^2+x+1)*f(x^3) + x*(1+2*x)/(1-x^3). - _Robert Israel_, Apr 13 2015

%t Table[FromDigits[RealDigits[n, 3], 9], {n, 1, 100}] (* _Clark Kimberling_, Aug 14 2012 *)

%t Select[Range[0,1000],Total[IntegerDigits[#,3]]==Total[IntegerDigits[#,9]]&] (* _Harvey P. Dale_, Feb 17 2020 *)

%o (PARI) a(n) = {my(d = digits(n, 3)); subst(Pol(d), x, 9);} \\ _Michel Marcus_, Apr 09 2015

%o (Julia)

%o function a(n)

%o m, r, b = n, 0, 1

%o while m > 0

%o m, q = divrem(m, 3)

%o r += b * q

%o b *= 9

%o end

%o r end

%o [a(n) for n in 0:53] |> println # _Peter Luschny_, Jan 03 2021

%Y Cf. A007089, A208665, A338086 (ternary digit duplication).

%Y Cf. A053735, A053830.

%K nonn,base

%O 0,3

%A _Clark Kimberling_

%E Edited by _N. J. A. Sloane_ at the suggestion of _Andrew S. Plewe_, Jun 08 2007

%E Offset changed to 0 by _Clark Kimberling_, Aug 14 2012