login
A037308
Numbers whose base-2 and base-10 expansions have the same digit sum.
19
0, 1, 20, 21, 122, 123, 202, 203, 222, 223, 230, 231, 302, 303, 410, 411, 502, 503, 1130, 1131, 1150, 1151, 1202, 1203, 1212, 1213, 1230, 1231, 1300, 1301, 1402, 1403, 1502, 1503, 1510, 1511, 2006, 2007, 2032, 2033, 2102, 2103, 2200, 2201, 3006, 3007, 3012
OFFSET
1,3
COMMENTS
n is in the sequence iff n+(-1)^n is in the sequence. [Robert Israel, Mar 25 2013]
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
From Reinhard Zumkeller, Aug 06 2010: (Start)
A007953(a(n)) = A000120(a(n));
A180018(a(n)) = 0. (End)
EXAMPLE
122 is a member, since digital-sum_2(122) = 5 = digital-sum_10(122).
MAPLE
N:= 10000; # to get all elements up to N
select(x -> (convert(convert(x, base, 10), `+`)-convert(convert(x, base, 2), `+`)=0), [$0..N]); # Robert Israel, Mar 25 2013
MATHEMATICA
Select[Range[0, 5000], Total[IntegerDigits[#, 2]] == Total[IntegerDigits[#, 10]] &] (* Jean-François Alcover, Mar 07 2016 *)
PROG
(PARI) is(n)=hammingweight(n)==sumdigits(n); \\ Charles R Greathouse IV, Sep 25 2012
(Sage) [n for n in (0..10000) if sum(n.digits(base=2)) == sum(n.digits(base=10))] # Freddy Barrera, Oct 12 2018
(Python)
def ok(n): return sum(map(int, str(n))) == sum(map(int, bin(n)[2:]))
print(list(filter(ok, range(3013)))) # Michael S. Branicky, Jun 20 2021
KEYWORD
nonn,base
EXTENSIONS
Edited by N. J. A. Sloane Nov 29 2008 at the suggestion of Zak Seidov
STATUS
approved