OFFSET
1,3
COMMENTS
The Birkhoff polytope is an (n-1)^2-dimensional polytope in n^2-dimensional space; its vertices are the n! permutation matrices.
Is a(n) divisible by n^2 for all n>=4? - Dean Hickerson, Nov 27 2002
LINKS
Matthias Beck and Dennis Pixton, The Ehrhart polynomial of the Birkhoff polytope
Matthias Beck, Stanley's Major Contributions to Ehrhart Theory, arXiv preprint arXiv:1407.0255 [math.CO], 2014.
Matthias Beck and Dennis Pixton, The Ehrhart polynomial of the Birkhoff polytope, arXiv:math/0202267 [math.CO], 2002-2005.
Matthias Beck and Dennis Pixton, The Ehrhart polynomial of the Birkhoff polytope, Discrete Comput. Geom. 30 (2003), no. 4, 623-637.
Petter Brändén, Jonathan Leake, and Igor Pak, Lower bounds for contingency tables via Lorentzian polynomials, arXiv:2008.05907 [math.CO], 2020.
C. S. Chan and D. P. Robbins, On the volume of the polytope of doubly stochastic matrices, arXiv:math/9806076 [math.CO], 1998.
C. S. Chan and D. P. Robbins, On the volume of the polytope of doubly stochastic matrices, Exper. Math. 8 (1999), 291-300.
Jesús A. De Loera, Fu Liu, and Ruriko Yoshida, A generating function for all semi-magic squares and the volume of the Birkhoff polytope, J. Algebraic Combin. 30 (2009), no. 1, 113-139.
R. P. Stanley, Decompositions of rational convex polytopes, Annals of Discrete Math. 6 (1980), 333-342.
FORMULA
EXAMPLE
a(2)=1: The polytope of 2 X 2 matrices is the line segment from (1,0;0,1) to (0,1;1,0), with length v(2)=2, so a(2) = 1! * 2 / 2^1 = 1.
CROSSREFS
KEYWORD
nonn,hard,nice
AUTHOR
Günter M. Ziegler (ziegler(AT)math.tu-berlin.de)
EXTENSIONS
v(9) computed by Matthias Beck (matthias(AT)math.binghamton.edu) and Dennis Pixton (dennis(AT)math.binghamton.edu), Feb 25 2002
Edited by Dean Hickerson, Nov 27 2002
a(10) is based on a calculation of v(10) by Matthias Beck (matthias(AT)math.binghamton.edu) and Dennis Pixton (dennis(AT)math.binghamton.edu) from Mar 13 2002 to May 18 2003
STATUS
approved