login
A036648
Number of centered 5-valent trees with n nodes.
2
0, 1, 0, 1, 1, 2, 3, 6, 11, 24, 48, 109, 242, 574, 1346, 3258, 7928, 19664, 49158, 124384, 316791, 813231, 2099326, 5451613, 14226697, 37306971, 98247737, 259779698, 689385447, 1835644498, 4902992215, 13133825317, 35276818036
OFFSET
0,6
LINKS
E. M. Rains and N. J. A. Sloane, On Cayley's Enumeration of Alkanes (or 4-Valent Trees), J. Integer Sequences, Vol. 2 (1999), Article 99.1.1.
FORMULA
a(n) = A036650(n) - A036649(n).
MATHEMATICA
n = 30; (* algorithm from Rains and Sloane *)
S4[f_, h_, x_] := f[h, x]^4/24 + f[h, x]^2 f[h, x^2]/4 + f[h, x] f[h, x^3]/3 + f[h, x^2]^2/8 + f[h, x^4]/4;
S5[f_, h_, x_] := f[h, x]^5/120 + f[h, x]^3 f[h, x^2]/12 + f[h, x]^2 f[h, x^3]/6 + f[h, x] f[h, x^2]^2/8 + f[h, x] f[h, x^4]/4 + f[h, x^2] f[h, x^3]/6 + f[h, x^5]/5;
T[-1, z_] := 1; T[h_, z_] := T[h, z] = Table[z^k, {k, 0, n}].Take[CoefficientList[z^(n+1) + 1 + S4[T, h-1, z]z, z], n+1];
Sum[Take[CoefficientList[z^(n+1) + S5[T, h-1, z]z - S5[T, h-2, z]z - (T[h-1, z] - T[h-2, z]) (T[h-1, z]-1), z], n+1], {h, 1, n/2}] + PadRight[{0, 1}, n+1] (* Robert A. Russell, Sep 15 2018 *)
CROSSREFS
Sequence in context: A006787 A176425 A000992 * A047750 A072187 A072374
KEYWORD
nonn
STATUS
approved