login
A036223
Expansion of 1/(1-3*x)^10; 10-fold convolution of A000244 (powers of 3).
12
1, 30, 495, 5940, 57915, 486486, 3648645, 25019280, 159497910, 956987460, 5454828522, 29753610120, 156206453130, 793048146660, 3908594437110, 18761253298128, 87943374834975, 403504896301650, 1815772033357425
OFFSET
0,2
COMMENTS
With a different offset, number of n-permutations (n >= 9) of 4 objects: u, v, z, x with repetition allowed, containing exactly nine (9) u's. - Zerinvary Lajos, Jul 02 2008
LINKS
Index entries for linear recurrences with constant coefficients, signature (30,-405,3240,-17010,61236,-153090,262440,-295245,196830,-59049).
FORMULA
a(n) = 3^n*binomial(n+9, 9).
a(n) = A027465(n+10, 10).
G.f.: 1/(1-3*x)^10.
E.g.f.: (4480 + 120960*x + 725760*x^2 + 1693440*x^3 + 1905120*x^4 + 1143072*x^5 + 381024*x^6 + 69984*x^7 + 6561*x^8 + 243*x^9)*exp(3*x)/4480. - G. C. Greubel, May 18 2021
From Amiram Eldar, Sep 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 6912*log(3/2) - 784431/280.
Sum_{n>=0} (-1)^n/a(n) = 1769472*log(4/3) - 142532433/280. (End)
MAPLE
seq(3^n*binomial(n+9, 9), n=0..20); # Zerinvary Lajos, Jul 02 2008
MATHEMATICA
Table[3^n*Binomial[n+9, 9], {n, 0, 30}] (* G. C. Greubel, May 18 2021 *)
CoefficientList[Series[1/(1-3x)^10, {x, 0, 30}], x] (* or *) LinearRecurrence[ {30, -405, 3240, -17010, 61236, -153090, 262440, -295245, 196830, -59049}, {1, 30, 495, 5940, 57915, 486486, 3648645, 25019280, 159497910, 956987460}, 30] (* Harvey P. Dale, Jan 16 2022 *)
PROG
(Sage) [3^n*binomial(n+9, 9) for n in range(30)] # Zerinvary Lajos, Mar 13 2009
(Magma) [3^n*Binomial(n+9, 9): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
CROSSREFS
Cf. A027465.
Sequences of the form 3^n*binomial(n+m, m): A000244 (m=0), A027471 (m=1), A027472 (m=2), A036216 (m=3), A036217 (m=4), A036219 (m=5), A036220 (m=6), A036221 (m=7), A036222 (m=8), this sequence (m=9), A172362 (m=10).
Sequence in context: A127544 A133927 A082556 * A022658 A090957 A060560
KEYWORD
easy,nonn
STATUS
approved