OFFSET
0,3
LINKS
Ray Chandler, Table of n, a(n) for n = 0..1000 (first 200 terms from Georg Fischer)
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (0, 46, 0, -1035, 0, 15180, 0, -163185, 0, 1370754, 0, -9366819, 0, 53524680, 0, -260932815, 0, 1101716330, 0, -4076350421, 0, 13340783196, 0, -38910617655, 0, 101766230790, 0, -239877544005, 0, 511738760544, 0, -991493848554, 0, 1749695026860, 0, -2818953098830, 0, 4154246671960, 0, -5608233007146, 0, 6943526580276, 0, -7890371113950, 0, 8233430727600, 0, -7890371113950, 0, 6943526580276, 0, -5608233007146, 0, 4154246671960, 0, -2818953098830, 0, 1749695026860, 0, -991493848554, 0, 511738760544, 0, -239877544005, 0, 101766230790, 0, -38910617655, 0, 13340783196, 0, -4076350421, 0, 1101716330, 0, -260932815, 0, 53524680, 0, -9366819, 0, 1370754, 0, -163185, 0, 15180, 0, -1035, 0, 46, 0, -1).
MAPLE
f := proc(m) local k, t1; t1 := 2^(n-1)*binomial((n+2*m)/2-1, n-1); if m mod 2 = 0 then t1 := t1+add(2^k*binomial(n, k)*binomial(m-1, k-1), k=0..n); fi; t1; end; where n=46.
CROSSREFS
KEYWORD
nonn
AUTHOR
Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
Recomputed by N. J. A. Sloane, Nov 27 1998
Zeroes inserted by Georg Fischer, Jul 26 2020
STATUS
approved