login
A035743
Coordination sequence for 48-dimensional cubic lattice.
3
1, 96, 4608, 147488, 3542016, 68095200, 1091884544, 15023056032, 181095585792, 1943370847584, 18801236605440, 165673550159136, 1341056098444288, 10043368807877088, 70018291338395136
OFFSET
0,2
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (48, -1128, 17296, -194580, 1712304, -12271512, 73629072, -377348994, 1677106640, -6540715896, 22595200368, -69668534468, 192928249296, -482320623240, 1093260079344, -2254848913647, 4244421484512, -7309837001104, 11541847896480, -16735679449896, 22314239266528, -27385657281648, 30957699535776, -32247603683100, 30957699535776, -27385657281648, 22314239266528, -16735679449896, 11541847896480, -7309837001104, 4244421484512, -2254848913647, 1093260079344, -482320623240, 192928249296, -69668534468, 22595200368, -6540715896, 1677106640, -377348994, 73629072, -12271512, 1712304, -194580, 17296, -1128, 48, -1).
FORMULA
G.f.: ((1+x)/(1-x))^48.
n*a(n) = 96*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Aug 31 2018
MATHEMATICA
CoefficientList[Series[((1 + x)/(1 - x))^48, {x, 0, 50}], x] (* Stefano Spezia, Aug 31 2018 *)
PROG
(PARI) x='x+O('x^99); Vec(((1+x)/(1-x))^48) \\ Altug Alkan, Aug 31 2018
CROSSREFS
Sequence in context: A035150 A268871 A017812 * A035809 A017759 A251159
KEYWORD
nonn,easy
AUTHOR
Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
Recomputed by N. J. A. Sloane, Nov 25 1998
STATUS
approved