login
A035739
Coordination sequence for 44-dimensional cubic lattice.
2
1, 88, 3872, 113608, 2501312, 44091256, 648339296, 8182044904, 90488748416, 891142686104, 7914446636448, 64044689834760, 476256430985280, 3278081347299000, 21013302552438240, 126119045475296808, 712041389847515904
OFFSET
0,2
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (44, -946, 13244, -135751, 1086008, -7059052, 38320568, -177232627, 708930508, -2481256778, 7669339132, -21090682613, 51915526432, -114955808528, 229911617056, -416714805914, 686353797976, -1029530696964, 1408831480056, -1761039350070, 2012616400080, -2104098963720, 2012616400080, -1761039350070, 1408831480056, -1029530696964, 686353797976, -416714805914, 229911617056, -114955808528, 51915526432, -21090682613, 7669339132, -2481256778, 708930508, -177232627, 38320568, -7059052, 1086008, -135751, 13244, -946, 44, -1).
FORMULA
G.f.: ((1+x)/(1-x))^44.
n*a(n) = 88*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Aug 28 2018
CROSSREFS
Sequence in context: A194491 A093288 A017804 * A035807 A017751 A137057
KEYWORD
nonn,easy
AUTHOR
Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
Recomputed by N. J. A. Sloane, Nov 25 1998
STATUS
approved