login
A035735
Coordination sequence for 40-dimensional cubic lattice.
2
1, 80, 3200, 85360, 1708800, 27392016, 366366080, 4206606640, 42340840960, 379634835920, 3070951360128, 22644802030320, 153524473002240, 963926974039440, 5639746542798720, 30914051605760688, 159505036253752320
OFFSET
0,2
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (40, -780, 9880, -91390, 658008, -3838380, 18643560, -76904685, 273438880, -847660528, 2311801440, -5586853480, 12033222880, -23206929840, 40225345056, -62852101650, 88732378800, -113380261800, 131282408400, -137846528820, 131282408400, -113380261800, 88732378800, -62852101650, 40225345056, -23206929840, 12033222880, -5586853480, 2311801440, -847660528, 273438880, -76904685, 18643560, -3838380, 658008, -91390, 9880, -780, 40, -1).
FORMULA
G.f.: ((1+x)/(1-x))^40.
n*a(n) = 80*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Aug 27 2018
MATHEMATICA
CoefficientList[Series[((1+x)/(1-x))^40, {x, 0, 20}], x] (* Harvey P. Dale, Apr 25 2011 *)
PROG
(PARI) Vec(((1+x)/(1-x))^40 + O(x^20)) \\ Felix Fröhlich, Aug 27 2018
CROSSREFS
Sequence in context: A233950 A324071 A017796 * A035805 A017743 A234325
KEYWORD
nonn,easy
AUTHOR
Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
Recomputed by N. J. A. Sloane, Nov 25 1998
STATUS
approved