login
A035599
Number of points of L1 norm 5 in cubic lattice Z^n.
4
0, 2, 20, 102, 360, 1002, 2364, 4942, 9424, 16722, 28004, 44726, 68664, 101946, 147084, 207006, 285088, 385186, 511668, 669446, 864008, 1101450, 1388508, 1732590, 2141808, 2625010, 3191812, 3852630, 4618712, 5502170, 6516012
OFFSET
0,2
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
M. Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - N. J. A. Sloane, Feb 13 2013
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
FORMULA
a(n) = (4*n^4+20*n^2+6)*n/15. - Frank Ellermann, Mar 16 2002
G.f.: 2*x*(1+x)^4/(1-x)^6. - Colin Barker, Mar 19 2012
a(n) = 2*A069038(n). - R. J. Mathar, Dec 10 2013
From Shel Kaphan, Mar 01 2023: (Start)
a(n) = 2*n*Hypergeometric2F1(1-n,1-k,2,2), where k=5.
a(n) = A001847(n) - A001846(n).
a(n) = A008413(n)*n/5. (End)
MAPLE
f := proc(d, m) local i; sum( 2^i*binomial(d, i)*binomial(m-1, i-1), i=1..min(d, m)); end; # n=dimension, m=norm
MATHEMATICA
CoefficientList[Series[2*x*(1+x)^4/(1-x)^6, {x, 0, 33}], x] (* Vincenzo Librandi, Apr 23 2012 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 2, 20, 102, 360, 1002}, 40] (* Harvey P. Dale, Dec 30 2023 *)
PROG
(PARI) a(n)=(4*n^5+20*n^3+6*n)/15 \\ Charles R Greathouse IV, Dec 07 2011
(Magma) [(4*n^4+20*n^2+6)*n/15: n in [0..30]]; // Vincenzo Librandi, Apr 23 2012
CROSSREFS
Column 5 of A035607, A266213. Row 5 of A113413, A119800, A122542.
Sequence in context: A107483 A356344 A220856 * A222556 A103101 A267678
KEYWORD
nonn,easy
STATUS
approved