login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035279
One tenth of deca-factorial numbers.
11
1, 20, 600, 24000, 1200000, 72000000, 5040000000, 403200000000, 36288000000000, 3628800000000000, 399168000000000000, 47900160000000000000, 6227020800000000000000, 871782912000000000000000, 130767436800000000000000000, 20922789888000000000000000000
OFFSET
1,2
COMMENTS
E.g.f. is g.f. for A011557(n-1) (powers of ten).
FORMULA
10*a(n) = (10*n)(!^10) = Product_{j=1..n} 10*j = 10^n*n!.
E.g.f.: (-1 + (1-10*x)^(-1))/10.
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 10*(exp(1/10)-1).
Sum_{n>=1} (-1)^(n+1)/a(n) = 10*(1-exp(-1/10)). (End)
MAPLE
seq(10^(n-1)*n!, n=1..20); # G. C. Greubel, Nov 11 2019
MATHEMATICA
Table[10^(n-1)*n!, {n, 20}] (* G. C. Greubel, Nov 11 2019 *)
PROG
(PARI) vector(20, n, 10^(n-1)*n! ) \\ G. C. Greubel, Nov 11 2019
(Magma) [10^(n-1)*Factorial(n): n in [1..20]]; // G. C. Greubel, Nov 11 2019
(Sage) [10^(n-1)*factorial(n) for n in (1..20)] # G. C. Greubel, Nov 11 2019
(GAP) List([1..20], n-> 10^(n-1)*Factorial(n) ); # G. C. Greubel, Nov 11 2019
CROSSREFS
Sequence in context: A184123 A027407 A116218 * A015268 A202577 A059420
KEYWORD
easy,nonn
STATUS
approved