login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035230
Fourier coefficients of T_0.
6
1, 0, -196884, -42987520, -2592899910, -80983425024, -1666013203000, -25512139800576, -312598958503545, -3211927093248000, -28587962068059780, -225673933095936000, -1608331026494712234, -10491764636229304320, -63336131453375852760, -356969583451747352576
OFFSET
-1,3
COMMENTS
In Siegel's notation, Delta has been normalized already.
T_0 is unique weight-2 normalized meromorphic modular form for SL(2,Z) with all poles at infinity.
REFERENCES
C. L. Siegel, Advanced Analytic Number Theory, Tata Institute of Fundamental Research, Bombay, 1980, pp. 249-268.
LINKS
FORMULA
G.f.: G_14/Delta. (in Siegel's notation)
Expansion of (j(q)^4 (j(q) - 1728)^3 Delta(q))^(1/6) in powers of q = exp(2 Pi i t). - Michael Somos, Jul 29 2014
a(n) = -n*A000521(n). - Seiichi Manyama, Jul 12 2017
G.f.: -q*j' where j is the elliptic modular invariant (A000521). - Seiichi Manyama, Jul 12 2017
a(n) ~ -n^(1/4) * exp(4*Pi*sqrt(n)) / sqrt(2). - Vaclav Kotesovec, Mar 06 2018
EXAMPLE
T_0 = 1/q - 196884*q - 42987520*q^2 - 2592899910*q^3 - 80983425024*q^4 + ...
MATHEMATICA
a[n_] := -n*SeriesCoefficient[1728*KleinInvariantJ[-Log[q]*I/(2*Pi)], {q, 0, n}]; Table[a[n], {n, -1, 14}] (* Jean-François Alcover, Nov 02 2017, after Seiichi Manyama *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, A = x^3 * O(x^n); polcoeff( (x * eta(x + A)^24 * ellj(x + A)^4 * (ellj(x + A) - 1728)^3)^(1/6), n))}; /* Michael Somos, Jul 29 2014 */
(PARI) {a(n) = if( n<-1, 0, polcoeff( -x * ellj(x + x^3 * O(x^n))', n))}; /* Michael Somos, Jul 31 2018 */
CROSSREFS
Cf. A000521.
Sequence in context: A014708 A302407 A305699 * A099818 A345658 A185519
KEYWORD
sign,easy
AUTHOR
Barry Brent (barryb(AT)primenet.com)
STATUS
approved