login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035219
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 37.
23
1, 0, 2, 1, 0, 0, 2, 0, 3, 0, 2, 2, 0, 0, 0, 1, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 4, 2, 0, 0, 0, 0, 4, 0, 0, 3, 1, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2, 2, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 1, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 2, 0, 4, 0, 0, 0, 5
OFFSET
1,3
COMMENTS
Coefficients of Dedekind zeta function for the quadratic number field of discriminant 37. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022
LINKS
FORMULA
From Amiram Eldar, Nov 20 2023: (Start)
a(n) = Sum_{d|n} Kronecker(37, d).
Multiplicative with a(37^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(37, p) = -1 (p is in A038914), and a(p^e) = e+1 if Kronecker(37, p) = 1 (p is in A191027).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(sqrt(37)+6)/sqrt(37) = 0.819292168725... . (End)
MATHEMATICA
a[n_] := DivisorSum[n, KroneckerSymbol[37, #] &]; Array[a, 100] (* Amiram Eldar, Nov 20 2023 *)
PROG
(PARI) my(m = 37); direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))
(PARI) a(n) = sumdiv(n, d, kronecker(37, d)); \\ Amiram Eldar, Nov 20 2023
CROSSREFS
Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.
Sequence in context: A123477 A035225 A298931 * A245716 A241425 A352560
KEYWORD
nonn,easy,mult
STATUS
approved