login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035203
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 21.
25
1, 0, 1, 1, 2, 0, 1, 0, 1, 0, 0, 1, 0, 0, 2, 1, 2, 0, 0, 2, 1, 0, 0, 0, 3, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 1, 2, 0, 0, 0, 2, 0, 2, 0, 2, 0, 2, 1, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 2, 1
OFFSET
1,5
COMMENTS
Coefficients of Dedekind zeta function for the quadratic number field of discriminant 21. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022
LINKS
FORMULA
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log((5+sqrt(21))/2)/sqrt(21) = 0.683807... . - Amiram Eldar, Oct 11 2022
From Amiram Eldar, Nov 19 2023: (Start)
a(n) = Sum_{d|n} Kronecker(21, d).
Multiplicative with a(p^e) = 1 if Kronecker(21, p) = 0 (p = 3 or 7), a(p^e) = (1+(-1)^e)/2 if Kronecker(21, p) = -1 (p is in A038894), and a(p^e) = e+1 if Kronecker(21, p) = 1 (p is in A038893 \ {3, 7}). (End)
MATHEMATICA
a[n_] := DivisorSum[n, KroneckerSymbol[21, #] &]; Array[a, 100] (* Amiram Eldar, Oct 11 2022 *)
PROG
(PARI) my(m = 21); direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))
(PARI) a(n) = sumdiv(n, d, kronecker(21, d)); \\ Amiram Eldar, Nov 19 2023
CROSSREFS
Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.
Sequence in context: A343222 A112378 A324832 * A357905 A173920 A230001
KEYWORD
nonn,easy,mult
STATUS
approved