login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035009
STIRLING transform of [1,1,2,4,8,16,32,...].
22
1, 1, 3, 11, 47, 227, 1215, 7107, 44959, 305091, 2206399, 16913987, 136823263, 1163490499, 10366252031, 96491364675, 935976996127, 9440144423875, 98800604237119, 1071092025420867, 12008090971866207, 139014305916844739, 1659578039401022079, 20405708646650507075
OFFSET
0,3
COMMENTS
Numerators of sequence that shifts left one place under 1/2 order binomial transform. (Denominators are 2^(n-1) for n > 0.) - Franklin T. Adams-Watters, Jul 31 2005
Row sums of triangle A137597 starting (1, 3, 11, 47, 227, ...). - Gary W. Adamson, Jan 29 2008
From Gary W. Adamson, Jul 22 2011: (Start)
a(n)/2^(n-1) = upper left term in M^n, M = an infinite square production matrix in which a column of (1/2, 1/2, 1/2, ...) is appended to the right of Pascal's triangle, as follows:
1, 1/2, 0, 0, 0, 0, ...
1, 1, 1/2, 0, 0, 0, ...
1, 2, 1, 1/2, 0, 0, ...
1, 3, 3, 1, 1/2, 0, ...
1, 4, 6, 4, 1, 1/2, ..., etc.
(End)
From Bruno Berselli, Mar 20 2013: (Start)
Note that, for t=A222391:
a(1)*t = Sum_{n >= 1} 1 /(Gamma(n/2)*Gamma((n+1)/2)),
a(2)*t = Sum_{n >= 1} n /(Gamma(n/2)*Gamma((n+1)/2)),
a(3)*t = Sum_{n >= 1} n^2/(Gamma(n/2)*Gamma((n+1)/2)),
a(4)*t = Sum_{n >= 1} n^3/(Gamma(n/2)*Gamma((n+1)/2)),
a(5)*t = Sum_{n >= 1} n^4/(Gamma(n/2)*Gamma((n+1)/2)),
a(6)*t = Sum_{n >= 1} n^5/(Gamma(n/2)*Gamma((n+1)/2)), etc.
(End)
Except for the initial term, the main diagonal of A129340. - Peter Bala, Apr 14 2017
LINKS
Paul Barry, Eulerian-Dowling Polynomials as Moments, Using Riordan Arrays, arXiv:1702.04007 [math.CO], 2017.
Mikhail Khovanov, Victor Ostrik and Yakov Kononov, Two-dimensional topological theories, rational functions and their tensor envelopes, arXiv:2011.14758 [math.QA], 2020.
Toufik Mansour and Mark Shattuck, A recurrence related to the Bell Numbers, Integers 11 (2011), #A67.
FORMULA
a(n) = (1/2)*A001861(n), n > 0.
E.g.f.: (1 + exp(2*exp(x)-2))/2. - Emeric Deutsch, Feb 09, 2002
a(n+1) = 1 + 2*Sum_{j=1..n} binomial(n, j)*a(j). - Jon Perry, Apr 25 2005
Define f_1(x), f_2(x), ... such that f_1(x)=e^x and for n=2,3,... f_{n+1}(x) = (d/dx)(x*f_n(x)). Then a(n) = e^(-2)*f_n(2). - Milan Janjic, May 30 2008
G.f.: 1 + x/(Q(0) - 2*x) where Q(k) = 1 - x*(k+1)/( 1 - 2*x/Q(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Mar 22 2013
G.f.: 1/Q(0), where Q(k)= 1 - x - 2*x/(1 - x*(2*k+1)/(1 - x - 2*x/(1 - x*(2*k+2)/Q(k+1)))); (continued fraction). - Sergei N. Gladkovskii, May 13 2013
G.f.: 1 + Sum_{k>=1} 2^(k-1)*x^k/Product_{j=1..k} (1 - j*x). - Ilya Gutkovskiy, Jun 19 2018
EXAMPLE
Given the production matrix M, upper left term of M^5 = a(5)/2^4 = 227/16.
MAPLE
A035009 := proc(n) local a, b, i;
a := [seq(2, i=1..n-1)]; b := [seq(1, i=1..n-1)];
exp(-x)*hypergeom(a, b, x); round(evalf(subs(x=2, %), 10+2*n)) end:
seq(A035009(n), n=0..19); # Peter Luschny, Mar 30 2011
# second Maple program:
b:= proc(n, m) option remember;
`if`(n=0, ceil(2^(m-1)), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 03 2021
MATHEMATICA
1/(2*E^2)*Sum[(i + j)^n/(i!*j!), {i, 0, Infinity}, {j, 0, Infinity}] (* Starting from the 2nd term *) (* Vladimir Reshetnikov, Dec 31 2008 *)
Join[{1}, Table[BellB[n, 2]/2, {n, 1, 25}]] (* Vaclav Kotesovec, Jun 26 2022 *)
PROG
(PARI) x='x+O('x^99); Vec(serlaplace((1 + exp(2*exp(x)-2))/2)) \\ Joerg Arndt, Apr 01 2011
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved