login
A034588
Primes p such that the Fibonacci iterations starting with (1, p) lead to a "nine digits anagram".
4
1993, 8039, 22303, 30013, 31727, 46559, 50207, 63617, 65437, 72617, 83813, 92077, 101869, 102013, 109717, 131479, 136897, 141413, 145283, 156139, 162257, 163771, 204487, 206951, 207301, 209669, 211369, 221587, 221719, 225133, 225349, 233419
OFFSET
1,1
COMMENTS
A "nine digits anagram" is a number whose digits are a permutation of {1, ..., 9}, or one of the first 9! terms of A050289.
Largest term is a(46494) = 987653411.
Subset of primes in A034587. There are 767 (resp. 2982, resp. 6045) primes among the first 10^4 (resp. 5*10^4, resp. 10^5) terms of A034587, and (0, 1, 14, 129, 1566) terms among the first (100, 10^3, 10^4, 10^5, 10^6) primes, the last of which is 15480869 = prime(999708). - M. F. Hasler, Jan 06 2020
The terms larger than 987654320/2 = 493827160 are primes of the form A050289(k)-1 with 158324 <= k <= 9!, cf. A034587. There are exactly 13005 of these which are therefore the last 13005 terms of this sequence, starting with 493851671 = A050289(158332)-1 = prime(26048750). - M. F. Hasler, Jan 09 2020
The graph of this sequence has a distinct slope for values below, between, and above the two limits of 2.07e8 and 4.94e8, as for the graph of A034587 (cf. link). - M. F. Hasler, Jan 11 2020
LINKS
M. F. Hasler, Table of n, a(n) for n = 1..46494 (full sequence), Jan 09 2020
Patrick De Geest, Nine Digits Digressions
FORMULA
Intersection of A000040 and A034587.
EXAMPLE
Starting with (1, 233419), Fibonacci iterations x(n+1) = x(n) + x(n-1) yield the sequence (1, 233419, 233420, 466839, 700259, 1167098, 1867357, 3034455, 4901812, 7936267, 12838079, 20774346, 33612425, 54386771, 87999196, 142385967, ...) where a nine-digits anagram is reached.
PROG
(PARI) select( is_A034587, primes(22222)) \\ or, if a vector A034587 is available:
select(isprime, A034587) \\ e.g., using b034587.txt. - M. F. Hasler, Jan 06 2020
CROSSREFS
Cf. A034587 (full sequence), A034589 (lucky numbers), A034306 (palindromes).
Sequence in context: A206363 A233712 A223366 * A233935 A250380 A372247
KEYWORD
nonn,base,fini
AUTHOR
Patrick De Geest, Oct 15 1998
EXTENSIONS
Edited and offset changed to 1 by M. F. Hasler, Jan 06 2020
STATUS
approved