login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that 2^k does not contain the digit 2 (probably finite).
9

%I #46 Feb 11 2023 07:45:22

%S 0,2,3,4,6,12,14,16,20,22,23,26,34,35,36,39,42,46,54,64,74,83,168

%N Numbers k such that 2^k does not contain the digit 2 (probably finite).

%C Is 168 the last term?

%C First row of A136291. - _R. J. Mathar_ Apr 29 2008

%C Equivalently, indices of zeros in A065710. - _M. F. Hasler_, Feb 10 2023

%F The last term is A094776(2), by definition. - _M. F. Hasler_, Feb 10 2023

%e Here is 2^168, conjecturally the largest power of 2 that does not contain a 2:

%e 374144419156711147060143317175368453031918731001856. - _N. J. A. Sloane_, Feb 10 2023

%p isA034293 := proc(n) RETURN(not 2 in convert(2^n,base,10)) ; end: for n from 0 to 100000 do if isA034293(n) then print(n) ; fi ; od: # _R. J. Mathar_, Oct 04 2007

%t Join[{0}, Select[ Range@10000, FreeQ[ IntegerDigits[2^# ], 2] &]] (* _Shyam Sunder Gupta_, Sep 01 2007 *)(* adapted by _Vincenzo Librandi_, May 07 2015 *)

%t Select[Range[0, 10^4], DigitCount[2^#][[2]] == 0 &] (* _Michael De Vlieger_, Apr 29 2016 *)

%o (Magma) [n: n in [0..1000] | not 2 in Intseq(2^n) ]; // _Vincenzo Librandi_, May 07 2015

%o (PARI) is(n)=setsearch(Set(digits(2^n)),2)==0 \\ _Charles R Greathouse IV_, May 10 2016

%o (PARI) is_A034293(n)=!foreach(digits(2^n),d,d==2&&return) \\ _M. F. Hasler_, Feb 10 2023

%o (Python)

%o def is_A034293(n): return'2'not in str(2**n)

%o [n for n in range(199) if is_A034293(n)] # _M. F. Hasler_, Feb 10 2023

%Y Cf. A007377.

%Y See also similar sequences listed in A035064.

%Y Cf. A065710, A094776.

%K base,nonn

%O 1,2

%A _Erich Friedman_

%E Edited by _N. J. A. Sloane_, Oct 03 2007

%E Removed keyword "fini" since it is only a conjecture that this sequence contains only finitely many terms. - _Altug Alkan_, May 07 2016