login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least positive m such that n! + m is prime.
24

%I #62 Feb 22 2023 09:13:57

%S 1,1,1,1,5,7,7,11,23,17,11,1,29,67,19,43,23,31,37,89,29,31,31,97,131,

%T 41,59,1,67,223,107,127,79,37,97,61,131,1,43,97,53,1,97,71,47,239,101,

%U 233,53,83,61,271,53,71,223,71,149,107,283,293,271,769,131,271

%N Least positive m such that n! + m is prime.

%C Conjecture: No term is a composite number. a(n) is a prime > 3*prime(k), where k is such that prime(k) < n <= prime(k+1). - _Amarnath Murthy_, Apr 07 2004

%C Terms after n = 2000 in the b-file correspond to Fermat and Lucas PRP. - _Phillip Poplin_, Oct 12 2019

%H Phillip Poplin, <a href="/A033932/b033932.txt">Table of n, a(n) for n = 0..4000</a> (first 501 terms from T. D. Noe, then up to n=2000 from Hans Havermann)

%H Antonín Čejchan, Michal Křížek, and Lawrence Somer, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL25/Krizek/krizek3.html">On Remarkable Properties of Primes Near Factorials and Primorials</a>, Journal of Integer Sequences, Vol. 25 (2022), Article 22.1.4.

%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>

%F a(n) = A151800(n!) - n!. - _Max Alekseyev_, Jul 23 2014

%p a:= n-> (f-> nextprime(f)-f)(n!):

%p seq(a(n), n=0..70); # _Alois P. Heinz_, Feb 22 2023

%t a[n_] := (an = 1; While[ !PrimeQ[n! + an], an++]; an); Table[a[n], {n, 0, 63}] (* _Jean-François Alcover_, Dec 05 2012 *)

%t NextPrime[#]-#&/@(Range[0,70]!) (* _Harvey P. Dale_, May 18 2014 *)

%o (PARI) for(n=0,70, k=1; while(!isprime(n!+k), k++); print1(k,","))

%o (PARI) a(n) = nextprime(n!+1) - n!; \\ _Michel Marcus_, Dec 25 2020

%o (Python)

%o from sympy import factorial, nextprime

%o def a(n): fn = factorial(n); return nextprime(fn) - fn

%o print([a(n) for n in range(64)]) # _Michael S. Branicky_, May 22 2022

%Y Cf. A000142, A002981, A033933, A037151, A037153, A056752, A053714, A151800.

%K nice,nonn

%O 0,5

%A _Jeff Burch_

%E More terms from _Jud McCranie_

%E a(21) onwards from _Wouter Meeussen_

%E Better description from _Rick L. Shepherd_, Nov 06 2002