Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #55 Sep 04 2022 04:04:36
%S 0,12,60,180,420,840,1512,2520,3960,5940,8580,12012,16380,21840,28560,
%T 36720,46512,58140,71820,87780,106260,127512,151800,179400,210600,
%U 245700,285012,328860,377580,431520,491040,556512,628320,706860,792540,885780,987012
%N a(n) = n*(n + 1)*(n + 2)*(n + 3)/2.
%C a(n) is the area of an irregular quadrilateral with vertices at (1,1), (n+1, n+2), ((n+1)^2, (n+2)^2) and ((n+1)^3, (n+2)^3). - _Art Baker_, Dec 08 2018
%H G. C. Greubel, <a href="/A033486/b033486.txt">Table of n, a(n) for n = 0..5000</a> (terms 0..680 from Vincenzo Librandi)
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F a(n) = 6*A034827(n+3) = 12*A000332(n+3).
%F G.f.: 12*x/(1 - x)^5. - _Colin Barker_, Mar 01 2012
%F a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) with a(0) = 0, a(1) = 12, a(2) = 60, a(3) = 180, a(4) = 420. - _Harvey P. Dale_, Feb 04 2015
%F E.g.f.: (24*x + 36*x^2 + 12*x^3 + x^4)*exp(x)/2. - _Franck Maminirina Ramaharo_, Dec 08 2018
%F From _Amiram Eldar_, Sep 04 2022: (Start)
%F Sum_{n>=1} 1/a(n) = 1/9.
%F Sum_{n>=1} (-1)^(n+1)/a(n) = 8*(3*log(2)-2)/9. (End)
%p [seq(12*binomial(n+3,4),n=0..32)]; # _Zerinvary Lajos_, Nov 24 2006
%t Table[n*(n + 1)*(n + 2)*(n + 3)/2, {n, 0, 50}] (* _David Nacin_, Mar 01 2012 *)
%t LinearRecurrence[{5,-10,10,-5,1},{0,12,60,180,420},40] (* _Harvey P. Dale_, Feb 04 2015 *)
%o (Magma) [n*(n+1)*(n+2)*(n+3)/2: n in [0..40]]; // _Vincenzo Librandi_, Apr 28 2011
%o (PARI) a(n)=n*(n+1)*(n+2)*(n+3)/2 \\ _Charles R Greathouse IV_, Oct 07 2015
%o (GAP) List([0..40],n->n*(n+1)*(n+2)*(n+3)/2); # _Muniru A Asiru_, Dec 08 2018
%o (Sage) [12*binomial(n+3,4) for n in range(40)] # _G. C. Greubel_, Dec 08 2018
%Y Cf. A000332, A050534, A033488, A033487, A060008.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_