login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of (2*n+1)!*8*Bernoulli(2*n,1/2).
4

%I #27 Nov 21 2018 00:36:03

%S 8,-4,28,-930,96012,-24144750,12602990070,-12203470904625,

%T 20180112406353900,-53495387545025175750,216267236072968468547250,

%U -1280630367874799320798794375,10743714652441927865738713818750,-124178158916511109662405449217796875

%N Numerator of (2*n+1)!*8*Bernoulli(2*n,1/2).

%C As R. Israel remarks, the expression (2*n+1)!*8*Bernoulli(2*n,1/2) is no longer an integer for n = 15, 23, 27, 29, 30, 31, 39, 43, 45, 46, 47,... - _M. F. Hasler_, Feb 16 2014

%C Denominators are in A238015. See A238163 for the rounded values and A238164 for another maybe more interesting variant. - _M. F. Hasler_, Mar 01 2014

%H Vincenzo Librandi, <a href="/A033473/b033473.txt">Table of n, a(n) for n = 0..150</a>

%H <a href="/index/Be#Bernoulli">Index entries for sequences related to Bernoulli numbers.</a>

%t a[n_] := Numerator[ (2 n + 1)! 8 BernoulliB[2 n, 1/2]]; Array[a, 14, 0] (* _Robert G. Wilson v_, Feb 17 2014, edited by _M. F. Hasler_, Mar 01 2014 *)

%t Table[Numerator[(2 n + 1)! 8 BernoulliB[2 n, 1/2]], {n, 0, 20}] (* _Vincenzo Librandi_, Feb 18 2014 *)

%o (PARI) A033473 = n->numerator((2*n+1)!*8*subst(bernpol(2*n,x),x,1/2)) \\ _M. F. Hasler_, Feb 16-18 2014

%Y Cf. A238163, A238164.

%K sign

%O 0,1

%A _N. J. A. Sloane_

%E Definition changed by _M. F. Hasler_, Feb 16 2014

%E Further edits by _M. F. Hasler_, Mar 01 2014