login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033457
GCD-convolution of squares A000290 with themselves.
2
1, 2, 6, 4, 19, 6, 28, 24, 45, 10, 98, 12, 79, 94, 120, 16, 201, 18, 238, 164, 171, 22, 436, 120, 229, 234, 426, 28, 695, 30, 496, 352, 369, 370, 1014, 36, 451, 470, 1068, 40, 1261, 42, 946, 1020, 639, 46, 1832, 336, 1225, 754, 1278, 52, 1899, 774, 1924, 920, 981
OFFSET
0,2
LINKS
FORMULA
a(n-2) = Sum_{d|n, d<n} d^2*phi(n/d). - Vladeta Jovovic, Aug 27 200
From Amiram Eldar, Dec 06 2024: (Start)
a(n) = A069097(n+2) - (n+2)^2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(2)/zeta(3) - 1)/3 = (A306633 - 1)/3 = 0.122810925... . (End)
MATHEMATICA
Table[Sum[d^2*EulerPhi[(n + 2)/d], {d, Most@ Divisors[n + 2]}], {n, 0, 47}] (* Michael De Vlieger, Mar 20 2015 *)
f[p_, e_] := p^(e - 1)*(p^e*(p + 1) - 1); a[n_] := Times @@ f @@@ FactorInteger[n + 2] - (n + 2)^2; Array[a, 100, 0] (* Amiram Eldar, Dec 06 2024 *)
PROG
(Sage) sum([d^2*euler_phi(int((n+2)/d)) for d in range(1, n+2) if (n+2)%d==0]) # Danny Rorabaugh, Mar 20 2015
(PARI) a(n) = {my(f = factor(n+2)); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; p^(e-1)*(p^e*(p+1) - 1)) - (n+2)^2; } \\ Amiram Eldar, Dec 06 2024
CROSSREFS
Sequence in context: A054786 A269372 A282902 * A133936 A065350 A333923
KEYWORD
nonn,easy,changed
STATUS
approved