login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Convolution of nonzero squares A000290 with themselves.
16

%I #84 Sep 08 2022 08:44:51

%S 1,8,34,104,259,560,1092,1968,3333,5368,8294,12376,17927,25312,34952,

%T 47328,62985,82536,106666,136136,171787,214544,265420,325520,396045,

%U 478296,573678,683704,809999,954304,1118480,1304512,1514513,1750728,2015538,2311464

%N Convolution of nonzero squares A000290 with themselves.

%C Total area of all square regions from an n X n grid. E.g., at n = 3, there are nine individual squares, four 2 X 2's and one 3 X 3, total area 9 + 16 + 9 = 34, hence a(3) = 34. - _Jon Perry_, Jul 29 2003

%C If X is an n-set and Y and Z disjoint 2-subsets of X then a(n) is equal to the number of 7-subsets of X intersecting both Y and Z. - _Milan Janjic_, Aug 26 2007

%C Every fourth term is odd. However, there are no primes in the sequence. - _Zak Seidov_, Feb 28 2011

%C -120*a(n) is the real part of (n + n*i)*(n + 2 + n*i)*(n + (n + 2)i)*(n + 2+(n + 2)*i)*(n + 1 + (n + 1)*i), where i = sqrt(-1). - _Jon Perry_, Feb 05 2014

%C The previous formula rephrases the factorization of the 5th-order polynomial a(n) = (n+1)*((n+1)^4-1) = (n+1)*A123864(n+1) based on the factorization in A123865. - _R. J. Mathar_, Feb 08 2014

%H Vincenzo Librandi, <a href="/A033455/b033455.txt">Table of n, a(n) for n = 1..1000</a>

%H Abderrahim Arabi, Hacène Belbachir, Jean-Philippe Dubernard, <a href="https://arxiv.org/abs/1811.05707">Plateau Polycubes and Lateral Area</a>, arXiv:1811.05707 [math.CO], 2018. See Column 1 Table 1 p. 8.

%H Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Two Enumerative Functions</a>

%H Milan Janjić, <a href="https://arxiv.org/abs/1905.04465">On Restricted Ternary Words and Insets</a>, arXiv:1905.04465 [math.CO], 2019.

%H C. P. Neuman and D. I. Schonbach, <a href="http://dx.doi.org/10.1137/1019006">Evaluation of sums of convolved powers using Bernoulli numbers</a>, SIAM Rev. 19 (1977), no. 1, 90--99. MR0428678 (55 #1698). See Table 2. - _N. J. A. Sloane_, Mar 23 2014

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).

%F a(n-1) = n*(n^4 - 1)/30 = A061167(n)/30. - _Henry Bottomley_, Apr 18 2001

%F G.f.: x*(1+x)^2/(1-x)^6. - _Philippe Deléham_, Feb 21 2012

%F a(n) = Sum_{k=1..n+1} k^2*(n+1-k)^2. - _Kolosov Petro_, Feb 07 2019

%F E.g.f.: x*(30 +90*x +65*x^2 +15*x^3 +x^4)*exp(x)/30. - _G. C. Greubel_, Jul 05 2019

%t Table[(n^5 - n)/30, {n,2,41}] (* _Vladimir Joseph Stephan Orlovsky_, Feb 28 2011 *)

%t CoefficientList[Series[(1+x)^2/(1-x)^6, {x,0,40}], x] (* _Vincenzo Librandi_, Mar 24 2014 *)

%o (Magma) [(n^5-n)/30: n in [2..41]]; // _Vincenzo Librandi_, Mar 24 2014

%o (PARI) vector(40, n, ((n+1)^5 -n-1)/30) \\ _G. C. Greubel_, Jul 05 2019

%o (Sage) [((n+1)^5 -n-1)/30 for n in (1..40)] # _G. C. Greubel_, Jul 05 2019

%o (GAP) List([1..40], n-> ((n+1)^5 -(n+1))/30) # _G. C. Greubel_, Jul 05 2019

%Y Cf. A000290, A001249, A123865, A219086.

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_

%E More terms from _Vincenzo Librandi_, Mar 24 2014