login
A033436
a(n) = ceiling( (3*n^2 - 4)/8 ).
17
0, 0, 1, 3, 6, 9, 13, 18, 24, 30, 37, 45, 54, 63, 73, 84, 96, 108, 121, 135, 150, 165, 181, 198, 216, 234, 253, 273, 294, 315, 337, 360, 384, 408, 433, 459, 486, 513, 541, 570, 600, 630, 661, 693, 726, 759, 793, 828
OFFSET
0,4
COMMENTS
Number of edges in 4-partite Turan graph of order n.
Apart from the initial term this equals the elliptic troublemaker sequence R_n(1,4) (also sequence R_n(3,4)) in the notation of Stange (see Table 1, p.16). For other elliptic troublemaker sequences R_n(a,b) see the cross references below. - Peter Bala, Aug 08 2013
REFERENCES
R. L. Graham, Martin Grötschel, and László Lovász, Handbook of Combinatorics, Vol. 2, 1995, p. 1234.
LINKS
Kevin Beanland, Hung Viet Chu, and Carrie E. Finch-Smith, Generalized Schreier sets, linear recurrence relation, Turán graphs, arXiv:2112.14905 [math.CO], 2021.
Katherine E. Stange, Integral points on elliptic curves and explicit valuations of division polynomials, arXiv:1108.3051 [math.NT], 2011-2014.
Eric Weisstein's World of Mathematics, Turán Graph.
Wikipedia, Turán graph.
FORMULA
The second differences of the listed terms are periodic with period (1, 1, 1, 0) of length 4, showing that the terms satisfy the recurrence a(n) = 2a(n-1)-a(n-2)+a(n-4)-2a(n-5)+a(n-6). - John W. Layman, Jan 23 2001
a(n) = (1/16) {6n^2 - 5 + (-1)^n + 2(-1)^[n/2] - 2(-1)^[(n-1)/2] }. Therefore a(n) is asymptotic to 3/8*n^2. - Ralf Stephan, Jun 09 2005
O.g.f.: -x^2*(1+x+x^2)/((x+1)*(x^2+1)*(x-1)^3). - R. J. Mathar, Dec 05 2007
a(n) = Sum_{k=0..n} A166486(k)*(n-k). - Reinhard Zumkeller, Nov 30 2009
a(n) = floor(3*n^2/8). - Peter Bala, Aug 08 2013
a(n) = Sum_{i=1..n} floor(3*i/4). - Wesley Ivan Hurt, Sep 12 2017
Sum_{n>=2} 1/a(n) = Pi^2/36 + tan(Pi/(2*sqrt(3)))*Pi/(2*sqrt(3)) + 2/3. - Amiram Eldar, Sep 24 2022
MATHEMATICA
LinearRecurrence[{2, -1, 0, 1, -2, 1}, {0, 0, 1, 3, 6, 9}, 48] (* Jean-François Alcover, Sep 21 2017 *)
PROG
(PARI) a(n)=(3*n^2 +3)\8 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Cf. A002620 (= R_n(1,2)), A000212 (= R_n(1,3) = R_n(2,3)), A033437 (= R_n(1,5) = R_n(4,5)), A033438 (= R_n(1,6) = R_n(5,6)), A033439 (= R_n(1,7) = R_n(6,7)), A033440, A033441, A033442, A033443, A033444.
Cf. A007590 (= R_n(2,4)), A030511 (= R_n(2,6) = R_n(4,6)), A184535 (= R_n(2,5) = R_n(3,5)).
Sequence in context: A048202 A014785 A132352 * A059293 A002578 A129728
KEYWORD
nonn,easy
STATUS
approved