login
A033010
Numbers each of whose runs of digits in base 12 has length 2.
3
13, 26, 39, 52, 65, 78, 91, 104, 117, 130, 143, 1872, 1898, 1911, 1924, 1937, 1950, 1963, 1976, 1989, 2002, 2015, 3744, 3757, 3783, 3796, 3809, 3822, 3835, 3848, 3861, 3874, 3887, 5616, 5629, 5642, 5668, 5681, 5694, 5707, 5720, 5733, 5746, 5759, 7488, 7501
OFFSET
1,1
COMMENTS
See A043291 and A033001 through A033014 for the analog in other bases, A033015 - A033029 for the variants with run lengths >= 2. - M. F. Hasler, Feb 02 2014
Numbers without repeating adjacent digits for which all digits are divisible by 13, in base 144. Consequently there are 11^n n-digit members of this sequence (base 144) and so (11^(n+1)-1)/10 members of this sequence below 144^n. - Charles R Greathouse IV, Feb 02 2014
LINKS
FORMULA
a(n) = 13*A043316(n) (= 13*n for n < 12). - M. F. Hasler, Feb 02 2014
MATHEMATICA
Select[Range[10000], Union[Length/@Split[IntegerDigits[#, 12]]]=={2}&] (* Vincenzo Librandi, Feb 05 2014 *)
PROG
(Python)
from sympy.ntheory import digits
from itertools import groupby
def ok(n):
return all(len(list(g))==2 for k, g in groupby(digits(n, 12)[1:]))
print(list(filter(ok, range(1, 7502)))) # Michael S. Branicky, Apr 27 2021
CROSSREFS
Sequence in context: A080196 A033025 A044838 * A019551 A098961 A033897
KEYWORD
nonn,base,easy
STATUS
approved