Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #71 Feb 11 2021 09:02:09
%S 1,1,6,16,56,147,392,912,2052,4262,8524,16159,29624,52234,89544,
%T 148976,242086,384111,597506,911456,1367184,2017509,2934559,4209504,
%U 5963464,8347612,11558232,15837472,21493712,28903332
%N Number of bracelets (turnover necklaces) of n beads of 2 colors, 11 of them black.
%C From _Vladimir Shevelev_, Apr 23 2011: (Start)
%C Also number of non-equivalent necklaces of 11 beads each of them painted by one of n colors.
%C The sequence solves the so-called Reis problem about convex k-gons in case k=11 (see our comment to A032279).
%C (End)
%D N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.
%H Andrew Howroyd, <a href="/A032282/b032282.txt">Table of n, a(n) for n = 11..1000</a>
%H Christian G. Bower, <a href="/transforms2.html">Transforms (2)</a>.
%H Hansraj Gupta, <a href="https://web.archive.org/web/20200806162943/https://www.insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005a66_964.pdf">Enumeration of incongruent cyclic k-gons</a>, Indian J. Pure and Appl. Math., 10 (1979), no.8, 964-999.
%H F. Ruskey, <a href="http://combos.org/necklace">Necklaces, Lyndon words, De Bruijn sequences, etc.</a>
%H F. Ruskey, <a href="/A000011/a000011.pdf">Necklaces, Lyndon words, De Bruijn sequences, etc.</a> [Cached copy, with permission, pdf format only]
%H Vladimir Shevelev, <a href="https://web.archive.org/web/20200722171019/http://www.insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/2000c4e8_629.pdf">Necklaces and convex k-gons</a>, Indian J. Pure and Appl. Math., 35 (2004), no. 5, 629-638.
%H Vladimir Shevelev, <a href="https://www.math.bgu.ac.il/~shevelev/Shevelev_Neclaces.pdf">Necklaces and convex k-gons</a>, Indian J. Pure and Appl. Math., 35 (2004), no. 5, 629-638.
%H Vladimir Shevelev, <a href="http://arxiv.org/abs/1104.4051">Spectrum of permanent's values and its extremal magnitudes in Lambda_n^3 and Lambda_n(alpha,beta,gamma)</a>, arXiv:1104.4051 [math.CO], 2011. (Cf. Section 5).
%H <a href="/index/Br#bracelets">Index entries for sequences related to bracelets</a>
%H <a href="/index/Rec#order_26">Index entries for linear recurrences with constant coefficients</a>, signature (5,-5,-15,35,1,-65,45,45,-65,1,36,-20,0,20,-36,-1,65,-45,-45,65,-1,-35,15,5,-5,1).
%F "DIK[ 11 ]" (necklace, indistinct, unlabeled, 11 parts) transform of 1, 1, 1, 1...
%F From _Vladimir Shevelev_, Apr 23 2011: (Start)
%F Put s(n,k,d)=1, if n==k(mod d), and s(n,k,d)=0, otherwise. Then
%F a(n) = 5*s(n,0,11)/11+(3840*C(n-1,10)+11*(n-2)*(n-4)*(n-6)(n-8)*(n-10))/84480, if n is even;
%F a(n) = 5*s(n,0,11)/11+(3840*C(n-1,10)+11*(n-1)*(n-3)*(n-5)*(n-7)*(n-9))/84480, if n is odd.
%F (End)
%F From _Herbert Kociemba_, Nov 05 2016: (Start)
%F G.f.: 1/22*x^11*(1/(1-x)^11 + 11/((-1+x)^6*(1+x)^5) - 10/(-1+x^11)).
%F G.f.: k=11, x^k*((1/k)*Sum_{d|k} phi(d)*(1-x^d)^(-k/d) + (1+x)/(1-x^2)^floor[(k+2)/2])/2. [edited by _Petros Hadjicostas_, Jul 18 2018]
%F (End)
%t k = 11; Table[(Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n + Binomial[If[OddQ[n], n - 1, n - If[OddQ[k], 2, 0]]/2, If[OddQ[k], k - 1, k]/2])/2, {n, k, 50}] (* _Robert A. Russell_, Sep 27 2004 *)
%t k=11;CoefficientList[Series[x^k*(1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])+(1+x)/(1-x^2)^Floor[(k+2)/2])/2,{x,0,50}],x] (* _Herbert Kociemba_, Nov 04 2016 *)
%Y Column k=11 of A052307.
%K nonn
%O 11,3
%A _Christian G. Bower_