login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of bracelets (turnover necklaces) of n beads of 2 colors, 7 of them black.
6

%I #96 Feb 12 2021 01:43:06

%S 1,1,4,8,20,38,76,133,232,375,600,912,1368,1980,2829,3936,5412,7293,

%T 9724,12760,16588,21287,27092,34112,42640,52819,65008,79392,96405,

%U 116280,139536,166464,197676,233529,274740,321741,375364

%N Number of bracelets (turnover necklaces) of n beads of 2 colors, 7 of them black.

%C From _Vladimir Shevelev_, Apr 23 2011: (Start)

%C Also number of nonequivalent necklaces of 7 beads each of them painted by one of n colors.

%C The sequence solves the so-called Reis problem about convex k-gons in case k=7 (see our comment to A032279).

%C (End)

%D N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.

%H Vincenzo Librandi, <a href="/A032280/b032280.txt">Table of n, a(n) for n = 7..1000</a>

%H C. G. Bower, <a href="/transforms2.html">Transforms (2)</a>

%H S. J. Cyvin, B. N. Cyvin, J. Brunvoll, I. Gutman, Chen Rong-si, S. El-Basil, and Zhang Fuji, <a href="http://zfn.mpdl.mpg.de/data/Reihe_A/52/ZNA-1997-52a-0867.pdf">Polygonal systems including the corannulene and coronene homologs: novel applications of Pólya's theorem</a>, Z. Naturforsch., 52a (1997), 867-873.

%H Hansraj Gupta, <a href="https://web.archive.org/web/20200806162943/https://www.insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005a66_964.pdf">Enumeration of incongruent cyclic k-gons</a>, Indian J. Pure and Appl. Math., 10 (1979), no. 8, 964-999.

%H F. Ruskey, <a href="http://combos.org/necklace">Necklaces, Lyndon words, De Bruijn sequences, etc.</a>

%H F. Ruskey, <a href="/A000011/a000011.pdf">Necklaces, Lyndon words, De Bruijn sequences, etc.</a> [Cached copy, with permission, pdf format only]

%H Vladimir Shevelev, <a href="https://web.archive.org/web/20200722171019/http://www.insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/2000c4e8_629.pdf">Necklaces and convex k-gons</a>, Indian J. Pure and Appl. Math., 35 (2004), no. 5, 629-638.

%H Vladimir Shevelev, <a href="https://www.math.bgu.ac.il/~shevelev/Shevelev_Neclaces.pdf">Necklaces and convex k-gons</a>, Indian J. Pure and Appl. Math., 35 (2004), no. 5, 629-638.

%H Vladimir Shevelev, <a href="http://arxiv.org/abs/0710.1370">A problem of enumeration of two-color bracelets with several variations</a>, arXiv:0710.1370 [math.CO], 2007-2011.

%H Vladimir Shevelev, <a href="http://arxiv.org/abs/1104.4051">Spectrum of permanent's values and its extremal magnitudes in Lambda_n^3 and Lambda_n(alpha,beta,gamma)</a>, arXiv:1104.4051 [math.CO], 2011. (Cf. Section 5).

%H <a href="/index/Br#bracelets">Index entries for sequences related to bracelets</a>

%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (3,0,-8,6,6,-8,1,0,-1,8,-6,-6,8,0,-3,1).

%F S. J. Cyvin et al. (1997) give a g.f.

%F "DIK[ 7 ]" (necklace, indistinct, unlabeled, 7 parts) transform of 1, 1, 1, 1...

%F From _Vladimir Shevelev_, Apr 23 2011: (Start)

%F Put s(n,k,d) = 1, if n == k(mod d); 0, otherwise. Then

%F a(n) = (3/7)*s(n,0,7) + (48*C(n-1,6) + 7*(n-2)*(n-4)*(n-6))/672, if n is even;

%F a(n) = (3/7)*s(n,0,7) + (48*C(n-1,6) + 7*(n-1)*(n-3)*(n-5))/672, if n is odd. (End)

%F G.f.: -x^7*(4*x^6-2*x^5-2*x^4+4*x^3+x^2-2*x+1) / ((x-1)^7*(x+1)^3*(x^6+x^5+x^4+x^3+x^2+x+1)). - _Colin Barker_, Feb 06 2013

%F From _Herbert Kociemba_, Nov 05 2016: (Start)

%F G.f.: (1/2)*x^7*((1+x)/(1-x^2)^4 + 1/7*(1/(1-x)^7 + 6/(1-x^7))).

%F G.f.: k=7, x^k*((1/k)*Sum_{d|k} phi(d)*(1-x^d)^(-k/d) + (1+x)/(1-x^2)^floor((k+2)/2))/2. [edited by _Petros Hadjicostas_, Jul 18 2018] (End)

%t k = 7; Table[(Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n + Binomial[If[OddQ[n], n - 1, n - If[OddQ[k], 2, 0]]/2, If[OddQ[k], k - 1, k]/2])/2, {n, k, 50}] (* _Robert A. Russell_, Sep 27 2004 *)

%t CoefficientList[Series[-(4 x^6 - 2 x^5 - 2 x^4 + 4 x^3 + x^2 - 2 x + 1)/((x - 1)^7 (x + 1)^3 (x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)), {x, 0, 40}], x] (* _Vincenzo Librandi_, Oct 19 2013 *)

%t k=7; CoefficientList[Series[x^k*(1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])+(1+x)/(1-x^2)^Floor[(k+2)/2])/2,{x,0,50}],x] (* _Herbert Kociemba_, Nov 04 2016 *)

%Y Column k=7 of A052307.

%K nonn,easy

%O 7,3

%A _Christian G. Bower_