login
A031150
Appending a digit to n^2 gives another perfect square.
10
1, 2, 4, 5, 6, 12, 18, 43, 80, 154, 191, 228, 456, 684, 1633, 3038, 5848, 7253, 8658, 17316, 25974, 62011, 115364, 222070, 275423, 328776, 657552, 986328, 2354785, 4380794, 8432812, 10458821, 12484830, 24969660, 37454490
OFFSET
1,2
COMMENTS
Square root of 'Squares from A023110 with last digit removed'.
One could include an initial '0', and even list it with multiplicity 3 or 4, since 00, 01, 04 and 09 are all perfect squares: In analogy to corresponding sequences for other bases, this sequence could be defined as sqrt(floor[A023110/10]), see A204512 [base 8], A204517 (base 7), A204519 (base 6), A204521 [base 5], A001353 [base 3], A001542 [base 2]. (For bases 4 and 9, the corresponding sequence contains all integers.) - M. F. Hasler, Jan 16 2012
REFERENCES
R. K. Guy, Neg and Reg, preprint, Jan 2012.
LINKS
M. F. Hasler, Truncated squares, OEIS wiki, Jan 16 2012
Joshua Stucky, Pell's Equation and Truncated Squares, Number Theory Seminar, Kansas State University, Feb 19 2018.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,38,0,0,0,0,0,0,-1).
FORMULA
G.f.: x*(x^10+2*x^9+4*x^8+5*x^7+18*x^6+12*x^5+6*x^4+5*x^3+4*x^2+2*x+1) / (x^14-38*x^7+1). - Colin Barker, Jan 30 2013
EXAMPLE
5^2 = 25 and 16^2 = 256, so 5 is in the sequence.
115364^2 = 13308852496, 364813^2 = 133088524969.
MAPLE
for i from 1 to 150000 do if (floor(sqrt(10 * i^2 + 9)) > floor(sqrt(10 * i^2))) then print(i) end if end do;
MATHEMATICA
CoefficientList[Series[(x^10 + 2 x^9 + 4 x^8 + 5 x^7 + 18 x^6 + 12 x^5 + 6 x^4 + 5 x^3 + 4 x^2 + 2 x + 1)/(x^14 - 38 x^7 + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 19 2013 *)
LinearRecurrence[{0, 0, 0, 0, 0, 0, 38, 0, 0, 0, 0, 0, 0, -1}, {1, 2, 4, 5, 6, 12, 18, 43, 80, 154, 191, 228, 456, 684}, 40] (* Harvey P. Dale, Jun 09 2017 *)
CROSSREFS
See A202303 for the resulting squares.
Sequence in context: A276001 A182109 A006539 * A125775 A331624 A191165
KEYWORD
nonn,base,easy
STATUS
approved