login
A030662
Number of combinations of n things from 1 to n at a time, with repeats allowed.
33
1, 5, 19, 69, 251, 923, 3431, 12869, 48619, 184755, 705431, 2704155, 10400599, 40116599, 155117519, 601080389, 2333606219, 9075135299, 35345263799, 137846528819, 538257874439, 2104098963719, 8233430727599, 32247603683099, 126410606437751, 495918532948103
OFFSET
1,2
COMMENTS
Add terms of an increasingly bigger diamond-shaped part of Pascal's triangle:
.......................... 1
............ 1 .......... 1 1
.. 1 ...... 1 1 ........ 1 2 1
. 1 1 =5 . 1 2 1 =19 .. 1 3 3 1 =69
.. 2 ...... 3 3 ........ 4 6 4
............ 6 ......... 10 10
.......................... 20
- Ralf Stephan, May 17 2004
The prime p divides a((p-1)/2) for p in A002144 (Pythagorean primes). - Alexander Adamchuk, Jul 04 2006
Also, number of square submatrices of a square matrix. - Jono Henshaw (jjono(AT)hotmail.com), Apr 22 2008
Partial sums of A051924. - J. M. Bergot, Jun 22 2013
Number of partitions with Ferrers diagrams that fit in an n X n box (excluding the empty partition of 0). - Michael Somos, Jun 02 2014
LINKS
Narcisse G. Bell Bogmis, Guy R. Biyogmam, Hesam Safa, and Calvin Tcheka, Upper bounds on the dimension of the Schur Lie-multiplier of Lie-nilpotent Leibniz n-algebras, arXiv:2403.14884 [math.RA], 2024. See p. 7.
Joseph D. Horton and Andrew Kurn, Counting sequences with complete increasing subsequences, Congress Numerantium, 33 (1981), 75-80. MR 681905
Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From N. J. A. Sloane, Feb 13 2013
Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
Raimundas Vidunas, Counting derangements and Nash equilibria, Ann. Comb. 21, No. 1, 131-152 (2017).
FORMULA
a(n) = A000984(n) - 1.
a(n) = 2*A001700(n-1) - 1.
a(n) = 2*(2*n-1)!/(n!*(n-1)!)-1.
a(n) = Sum_{k=1..n} binomial(n, k)^2. - Benoit Cloitre, Aug 20 2002
a(n) = Sum_{j=0..n} Sum_{i=j..n+j} binomial(i, j). - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jul 23 2003
a(n) = Sum_{i=0..n-1} Sum_{j=0..n-1} binomial(i+j, i). - N. J. A. Sloane, Jan 31 2009
Also for n>1: a(n)=(2*n)!/(n!)^2-1. - Hugo Pfoertner, Feb 10 2004
a(n) = Sum_{j=1..n} Sum_{i=1..n} (2n-i-j)!/((n-i)!*(n-j)!). - Alexander Adamchuk, Jul 04 2006
a(n) = A115112(n) + 1. - Jono Henshaw (jjono(AT)hotmail.com), Apr 22 2008
G.f.: Q(0)*(1-4*x)/x - 1/x/(1-x), where Q(k)= 1 + 4*(2*k+1)*x/( 1 - 1/(1 + 2*(k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 11 2013
D-finite with recurrence: n*a(n) +2*(-3*n+2)*a(n-1) +(9*n-14)*a(n-2) +2*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Jun 25 2013
0 = a(n)*(+16*a(n+1) - 70*a(n+2) + 68*a(n+3) - 14*a(n+4)) + a(n+1)*(-2*a(n+1) + 61*a(n+2) - 96*a(n+3) + 23*a(n+4)) + a(n+2)*(-6*a(n+2) + 31*a(n+3) - 10*a(n+4)) + a(n+3)*(-2*a(n+3) + a(n+4)) for all n in Z. - Michael Somos, Jun 02 2014
From Ilya Gutkovskiy, Jan 25 2017: (Start)
O.g.f.: (1 - x - sqrt(1 - 4*x))/((1 - x)*sqrt(1 - 4*x)).
E.g.f.: exp(x)*(exp(x)*BesselI(0,2*x) - 1). (End)
EXAMPLE
G.f. = x + 5*x^2 + 19*x^3 + 69*x^4 + 251*x^5 + 923*x^6 + 3431*x^7 + ...
MAPLE
seq(sum((binomial(n, m))^2, m=1..n), n=1..23); # Zerinvary Lajos, Jun 19 2008
f:=n->add( add( binomial(i+j, i), i=0..n), j=0..n); [seq(f(n), n=0..12)]; # N. J. A. Sloane, Jan 31 2009
MATHEMATICA
Table[Sum[Sum[(2n-i-j)!/(n-i)!/(n-j)!, {i, 1, n}], {j, 1, n}], {n, 1, 20}] (* Alexander Adamchuk, Jul 04 2006 *)
a[n_] := 2*(2*n-1)!/(n*(n-1)!^2)-1; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Oct 11 2012, from first formula *)
PROG
(Sage)
def a(n) : return binomial(2*n, n) - 1
[a(n) for n in (1..26)] # Peter Luschny, Apr 21 2012
(PARI) a(n)=binomial(2*n, n)-1 \\ Charles R Greathouse IV, Jun 26 2013
(Python)
from math import comb
def a(n): return comb(2*n, n) - 1
print([a(n) for n in range(1, 27)]) # Michael S. Branicky, Jul 11 2023
(Magma) [(n+1)*Catalan(n)-1: n in [1..40]]; // G. C. Greubel, Apr 07 2024
CROSSREFS
Column k=2 of A047909.
Central column of triangle A014473.
Right-hand column 2 of triangle A102541.
Sequence in context: A240525 A264200 A055991 * A149758 A026590 A243413
KEYWORD
nonn,nice
AUTHOR
Donald Mintz (djmintz(AT)home.com)
STATUS
approved