OFFSET
1,2
COMMENTS
Add terms of an increasingly bigger diamond-shaped part of Pascal's triangle:
.......................... 1
............ 1 .......... 1 1
.. 1 ...... 1 1 ........ 1 2 1
. 1 1 =5 . 1 2 1 =19 .. 1 3 3 1 =69
.. 2 ...... 3 3 ........ 4 6 4
............ 6 ......... 10 10
.......................... 20
- Ralf Stephan, May 17 2004
The prime p divides a((p-1)/2) for p in A002144 (Pythagorean primes). - Alexander Adamchuk, Jul 04 2006
Also, number of square submatrices of a square matrix. - Jono Henshaw (jjono(AT)hotmail.com), Apr 22 2008
Partial sums of A051924. - J. M. Bergot, Jun 22 2013
Number of partitions with Ferrers diagrams that fit in an n X n box (excluding the empty partition of 0). - Michael Somos, Jun 02 2014
LINKS
T. D. Noe, Table of n, a(n) for n = 1..500
Narcisse G. Bell Bogmis, Guy R. Biyogmam, Hesam Safa, and Calvin Tcheka, Upper bounds on the dimension of the Schur Lie-multiplier of Lie-nilpotent Leibniz n-algebras, arXiv:2403.14884 [math.RA], 2024. See p. 7.
Joseph D. Horton and Andrew Kurn, Counting sequences with complete increasing subsequences, Congress Numerantium, 33 (1981), 75-80. MR 681905
Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From N. J. A. Sloane, Feb 13 2013
Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
Raimundas Vidunas, Counting derangements and Nash equilibria, Ann. Comb. 21, No. 1, 131-152 (2017).
Jianqiang Zhao, Uniform Approach to Double Shuffle and Duality Relations of Various q-Analogs of Multiple Zeta Values via Rota-Baxter Algebras, arXiv preprint arXiv:1412.8044 [math.NT], 2014.
FORMULA
a(n) = A000984(n) - 1.
a(n) = 2*A001700(n-1) - 1.
a(n) = 2*(2*n-1)!/(n!*(n-1)!)-1.
a(n) = Sum_{k=1..n} binomial(n, k)^2. - Benoit Cloitre, Aug 20 2002
a(n) = Sum_{j=0..n} Sum_{i=j..n+j} binomial(i, j). - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jul 23 2003
a(n) = Sum_{i=0..n-1} Sum_{j=0..n-1} binomial(i+j, i). - N. J. A. Sloane, Jan 31 2009
Also for n>1: a(n)=(2*n)!/(n!)^2-1. - Hugo Pfoertner, Feb 10 2004
a(n) = Sum_{j=1..n} Sum_{i=1..n} (2n-i-j)!/((n-i)!*(n-j)!). - Alexander Adamchuk, Jul 04 2006
a(n) = A115112(n) + 1. - Jono Henshaw (jjono(AT)hotmail.com), Apr 22 2008
G.f.: Q(0)*(1-4*x)/x - 1/x/(1-x), where Q(k)= 1 + 4*(2*k+1)*x/( 1 - 1/(1 + 2*(k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 11 2013
D-finite with recurrence: n*a(n) +2*(-3*n+2)*a(n-1) +(9*n-14)*a(n-2) +2*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Jun 25 2013
0 = a(n)*(+16*a(n+1) - 70*a(n+2) + 68*a(n+3) - 14*a(n+4)) + a(n+1)*(-2*a(n+1) + 61*a(n+2) - 96*a(n+3) + 23*a(n+4)) + a(n+2)*(-6*a(n+2) + 31*a(n+3) - 10*a(n+4)) + a(n+3)*(-2*a(n+3) + a(n+4)) for all n in Z. - Michael Somos, Jun 02 2014
From Ilya Gutkovskiy, Jan 25 2017: (Start)
O.g.f.: (1 - x - sqrt(1 - 4*x))/((1 - x)*sqrt(1 - 4*x)).
E.g.f.: exp(x)*(exp(x)*BesselI(0,2*x) - 1). (End)
EXAMPLE
G.f. = x + 5*x^2 + 19*x^3 + 69*x^4 + 251*x^5 + 923*x^6 + 3431*x^7 + ...
MAPLE
seq(sum((binomial(n, m))^2, m=1..n), n=1..23); # Zerinvary Lajos, Jun 19 2008
f:=n->add( add( binomial(i+j, i), i=0..n), j=0..n); [seq(f(n), n=0..12)]; # N. J. A. Sloane, Jan 31 2009
MATHEMATICA
Table[Sum[Sum[(2n-i-j)!/(n-i)!/(n-j)!, {i, 1, n}], {j, 1, n}], {n, 1, 20}] (* Alexander Adamchuk, Jul 04 2006 *)
a[n_] := 2*(2*n-1)!/(n*(n-1)!^2)-1; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Oct 11 2012, from first formula *)
PROG
(Sage)
def a(n) : return binomial(2*n, n) - 1
[a(n) for n in (1..26)] # Peter Luschny, Apr 21 2012
(PARI) a(n)=binomial(2*n, n)-1 \\ Charles R Greathouse IV, Jun 26 2013
(Python)
from math import comb
def a(n): return comb(2*n, n) - 1
print([a(n) for n in range(1, 27)]) # Michael S. Branicky, Jul 11 2023
(Magma) [(n+1)*Catalan(n)-1: n in [1..40]]; // G. C. Greubel, Apr 07 2024
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Donald Mintz (djmintz(AT)home.com)
STATUS
approved