login
A030547
Number of terms (including the initial term) needed to reach a palindrome when the Reverse Then Add! map (x -> x + (x-with-digits-reversed)) is repeatedly applied to n, or -1 if a palindrome is never reached.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 1, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 1, 2, 3, 2, 3, 3, 2, 2, 2, 2, 2, 1, 2, 3, 3, 4, 2, 2, 2, 2, 3, 2, 1, 3, 4, 5, 2, 2, 2, 3, 2, 3, 3, 1, 5, 7, 2, 2, 3, 2, 3, 3, 4, 5, 1, 25, 2, 3, 2, 3, 3, 4, 5, 7, 25
OFFSET
1,10
COMMENTS
It is conjectured that a(196) is the smallest term equal to -1. See A023108.
REFERENCES
Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, 702 pages. See Entry 196.
LINKS
Eric Weisstein's World of Mathematics, 196 Algorithm.
MATHEMATICA
Table[Length@
NestWhileList[# + IntegerReverse[#] &, n, ! PalindromeQ[#] &], {n, 98}] (* Robert Price, Oct 18 2019 *)
CROSSREFS
Cf. A006960, A023108, A063018, etc.
Equals A033665(n) + 1.
Sequence in context: A094916 A036485 A331971 * A339932 A254690 A156642
KEYWORD
nonn,base
EXTENSIONS
Edited by N. J. A. Sloane, May 09 2015
STATUS
approved